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Abstract. A review is given of the very recent developments in the fields of real and virtual Compton
scattering off the nucleon. Both real and virtual Compton scattering reactions are discussed at low outgoing
photon energy where one accesses polarizabilities of the nucleon. The real Compton scattering at large
momentum transfer is discussed which is asymptotically a tool to obtain information on the valence quark
wave function of the nucleon. The rapid developments in deeply virtual Compton scattering and associated
meson electroproduction reactions at high energy, high photon virtuality and small momentum transfer
to the nucleon are discussed. A unified theoretical description of those processes has emerged over the
last few years, which gives access to new, generalized parton distributions. The experimental status and
perspectives in these fields are also discussed.

PACS. 13.60.Fz Elastic and Compton scattering – 13.40.-f Electromagnetic processes and properties –
12.38.Bx Perturbative calculations

1 Introduction

In the study of hadron structure, one of the main questions
is how hadrons and nuclei are built from quarks and gluons
and how one goes over from a description in terms of quark
and gluon degrees of freedom to a description in terms of
hadronic degrees of freedom.

Nowadays, precision experiments at high energy have
established Quantum Chromo Dynamics (QCD) as the
gauge theory of strong interactions describing the dynam-
ics between colored quarks and gluons. QCD exhibits the
property that the interaction between the quarks becomes
weak at very short distances, which is known as asymp-
totic freedom, and which allows us to use perturbation
theory to describe high-energy strong interaction phenom-
ena. On the other hand at low energy, the QCD coupling
constant grows, and quarks and gluons are confined into
colorless mesons and baryons, which are the particles as
seen through experiments. In this phase of hadronic mat-
ter, the underlying chiral symmetry of QCD, due to the
nearly massless up, down and approximately also strange
quarks, is spontaneously broken. To describe this regime
directly from the QCD Lagrangian is a hard task which
still defies a solution due to the strong coupling constant
requiring non-perturbative methods. Probably the most
promising and direct approach is the numerical solution
of QCD through lattice calculations. For static hadronic
properties, such as, e.g., masses, much progress has al-
ready been made, but for more complicated hadron struc-
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ture quantities, such as e.g., nucleon parton distributions,
lattice calculations are still in their infancy.

In absence of a full numerical solution of QCD, which
would be able to describe the rich complexity of the hadro-
nic many body systems from their underlying dynamics,
a complementary strategy to refine our understanding of
hadron structure is to perform new types of precision ex-
periments in kinematical regimes at low energy, which re-
quire an inherent non-perturbative description. Besides,
one may perform new types of experiments at high en-
ergies, in those kinematical regimes where factorization
theorems have been proven. Such experiments will allow
us to use an accurate perturbative QCD description of
the reaction dynamics as a tool to extract new types of
non-perturbative hadron structure information.

In this quest at the intersection of particle and nuclear
physics, the experiments performed with electromagnetic
probes play an important role. A new generation of pre-
cision experiments has become possible with the advent
of the new electron accelerators and in combination with
high-precision and large acceptance detectors. In particu-
lar, high precision Compton scattering experiments have
become a reality in recent years. In Compton scattering, a
real or virtual photon interacts with the nucleon and a real
photon is emitted in the process. As this is a purely elec-
tromagnetic process, it yields small cross-sections (com-
pared to hadronic reactions), but on the other hand con-
stitutes a clean probe of hadron structure.

In this paper, a review will be given of very recent
developments in the field of real and virtual Compton
scattering off the nucleon. I shall discuss real and vir-
tual Compton scattering at the same time and point
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out their complementarity and the differences in the ex-
tracted nucleon structure information. The emphasis is on
those kinematical regimes where a fruitful interpretation
is terms of nucleon structure observables has been shown
to be possible. Virtual Compton scattering (VCS) off the
nucleon has been reviewed before in ref. [1], which is re-
ferred to for most technical details. For the VCS part, the
emphasis is on the progress over the past two years in the
light of the first high precision VCS data in the threshold
regime now available, and on the rapid development in
the field of deeply virtual Compton scattering (DVCS) at
large photon virtuality.

In section 2, the real Compton scattering (RCS) pro-
cess below pion threshold is discussed. In this regime, the
RCS process can be interpreted as the global response of
the nucleon to an applied electromagnetic field, which al-
lows us to access global nucleon polarizabilities. A disper-
sion relation formalism is described, which was developed
as a method to minimize the model uncertainty in the ex-
traction of nucleon polarizabilites from both unpolarized
and polarized RCS data at low energy.

In section 3, the virtual Compton scattering (VCS)
reaction at low energy is discussed. It consists of a gener-
alization of RCS in which both energy and momentum of
the virtual photon can be varied independently, which al-
lows us to extract response functions, parametrized by the
so-called generalized polarizabilities (GP’s) of the nucleon.
A first dedicated VCS experiment was performed at the
MAMI accelerator, and two combinations of those GP’s
have been measured. Their values are compared with nu-
cleon structure model predictions. Further experimental
programs are underway at the major electron accelerators
to measure the VCS observables. It is outlined how results
of such experiments can be interpreted in terms of the nu-
cleon GP’s, and in particular how polarization observables
can separate the different GP’s.

Besides the low-energy region, RCS at high energy and
large momentum transfer is a tool to access information
on the partonic structure of the nucleon. In section 4, a
leading-order perturbative QCD calculation of RCS is de-
scribed, which was developed to extract the valence quark
wave function of the nucleon. Such an approach is com-
pared with competing mechanisms, and it is pointed out
how the planned experiments can shed light on this field.

Section 5 discusses the recent developments in deeply
virtual Compton scattering (DVCS) and associated meson
electroproduction reactions at high energy, high photon
virtuality Q2 and small momentum transfer to the nu-
cleon. It is shown how a unified theoretical description of
those processes has recently emerged and how it gives ac-
cess to new parton distributions, the so-called skewed par-
ton distributions, which are generalizations of the usual
parton distributions as known from inclusive deep inelastic
lepton scattering. Leading-order perturbative QCD calcu-
lations of DVCS and different meson electroproduction
reactions, using an ansatz for the skewed parton distribu-
tions, are discussed in the kinematical regimes accessible
at present or planned facilities. The corrections to those

leading-order QCD amplitudes and further open questions
in this field are touched on briefly.

In section 6, the calculation of the QED radiative cor-
rections to the VCS process is discussed, which is indis-
pensable to accurately extract the nucleon structure in-
formation from VCS experiments.

Finally, the conclusions and perspectives are given in
section 7.

2 Real Compton scattering (RCS) and
nucleon polarizabilities

2.1 Introduction

In the study of nucleon structure, real Compton scattering
(RCS) at low energy is a precision tool to access global in-
formation on the nucleon ground state and its excitation
spectrum. RCS off the nucleon is determined by 6 inde-
pendent helicity amplitudes, which are functions of two
variables, e.g., the Lorentz invariant variables ν (related to
the lab energy of the incident photon) and t (related to the
momentum transfer to the target). In the limit ν → 0, cor-
responding to wavelengths much larger than the nucleon
size, the general structure of these amplitudes is governed
by low-energy theorems (LET) based on Lorentz invari-
ance, gauge invariance and crossing symmetry. These the-
orems predict that the leading terms of an expansion in
ν are determined by global properties of the nucleon, i.e.
its charge, mass and anomalous magnetic moment. Fur-
thermore, the internal structure shows up only at relative
order ν2 and can be parametrized in terms of the polariz-
abilities. In this way, there appear 6 polarizabilities for the
nucleon, the electric and magnetic (scalar) polarizabilities
α and β respectively, familiar from classical physics, and
4 spin (vector) polarizabilities γ1 to γ4, originating from
the spin-1/2 nature of the nucleon. These polarizabilities
describe the response of the nucleon’s charge, magneti-
zation, and spin distributions to an external quasistatic
electromagnetic field. As such the polarizabilities are fun-
damental structure constants of the composite system.

The differential cross-section for RCS in the limit
ν → 0 is given by the (model independent) Thomson term,
as a consequence of the LET. The electric and magnetic
polarizabilities then appear, in a low-energy expansion for
RCS, as interference between the Thomson term and the
subleading terms, i.e. as contribution of O(ν2) in the dif-
ferential cross-section. In this way, α and β can in principle
be separated by studying the RCS angular distributions.
However, it has never been possible to isolate this term
and thus to determine the polarizabilities in a model in-
dependent way. The obvious reason is that, for sufficiently
small energies, say ν ≤ 40 MeV, the structure effects are
extremely small and hence the statistical errors for the
polarizabilities large. Therefore, one has to go to larger
energies, where the higher terms in the expansion become
increasingly important and where also the spin polarizabil-
ities come into play. To determine the nucleon polarizabil-
ities from RCS observables, a reliable estimate of higher
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terms in the energy is therefore of utmost importance. To
this end, actual experiments were usually analyzed in an
unsubtracted dispersion relation formalism at fixed t [2].
Using such an analysis, the proton scalar polarizabilities
were derived from Compton scattering data below pion
threshold, with the results [3]

α = (12.1 ± 0.8 ± 0.5) × 10−4 fm3 ,

β = (2.1 ∓ 0.8 ∓ 0.5) × 10−4 fm3 . (1)

Very recently, new RCS data on the proton below pion
threshold have become available [4]. These data increase
the available world data set substantially, and yield, in an
unsubtracted DR formalism, the results :

α = (11.89 ± 0.57) × 10−4 fm3 ,

β = (1.17 ± 0.75) × 10−4 fm3 . (2)

The sum of the scalar polarizabilities, which appears
in the forward spin-averaged Compton amplitude, can be
determined directly from the total photoabsorption cross-
section by Baldin’s sum rule [5], which yields a rather
precise value :

α+ β = (14.2 ± 0.5) × 10−4 fm3 , (3)

= (13.69 ± 0.14) × 10−4 fm3 , (4)

with (3) from ref. [6] and (4) from ref. [7].
Similarly, the proton forward spin polarizability can be

evaluated by an integral over the difference of the absorp-
tion cross-sections in states with helicity 3/2 and 1/2,

γ0 = γ1 − γ2 − 2γ4 = −1.34 × 10−4 fm4 , (5)

= −0.80 × 10−4 fm4 , (6)

with (5) from ref. [8] and (6) from ref. [9]. While the pre-
dictions of eqs. (5,6) rely on pion photoproduction mul-
tipoles, the helicity cross-sections have now been directly
determined at MAMI by scattering photons with circular
polarizations on polarized protons [10]. The contribution
to γ0 for the proton within the measured integration range
(200 MeV ≤ ν ≤ 800 MeV) is [10] :

γ0
∣∣ 800 MeV

200 MeV
= (−1.68± 0.07) × 10−4 fm4 . (7)

The contribution below 200 MeV can be estimated with
the HDT pion photoproduction multipoles [11] to yield
+1.0, and an estimate of the contribution above 800 MeV
based on the SAID pion photoproduction multipoles [12]
yields −0.02, which results in a total value : γ0 = −0.7
(here and in the following, all spin polarizabilities are
given in units 10−4 fm4).

Furthermore, unpolarized RCS data in the ∆(1232)-
region were used to give — within a dispersion relation
formalism — a first prediction for the so-called backward
spin polarizability of the proton, i.e. the particular combi-
nation γπ = γ1 + γ2 + 2γ4 entering the Compton spin-flip
amplitude at θ = 180◦ [13] :

γπ=−
[
27.1 ± 2.2(stat + syst)

+2.8
−2.4(model)

]
× 10−4 fm4.

(8)

These values for the polarizabilities can be compared
with our present day theoretical understanding from chi-
ral perturbation theory (ChPT). A calculation to O(p4)
in heavy baryon ChPT (HBChPT), where the expansion
parameter p is an external momentum or the quark mass,
yields (here and in the following, α and β are given in
units 10−4 fm3) : α = 10.5 ± 2.0 and β = 3.5 ± 3.6, the
errors being due to 4 counter terms entering to that order,
which were estimated by resonance saturation [14]. One of
these counter terms describes the large paramagnetic con-
tribution of the ∆(1232) resonance, which is partly can-
celled by large diamagnetic contributions of pion-nucleon
(Nπ)-loops. In view of the importance of the ∆-resonance,
the calculation was also done by including the ∆ as a dy-
namical degree of freedom. This adds a further expansion
parameter, the difference of the ∆ and nucleon masses (“ε
expansion”). A calculation to O(ε3) yielded α = 12.2 + 0
+ 4.2 = 16.4 and β = 1.2 + 7.2 + 0.7 = 9.1, the 3 separate
terms referring to contributions of Nπ-loops (which is the
O(p3) result), ∆-pole terms, and ∆π-loops [15,16]. These
O(ε3) predictions are clearly at variance with the data, in
particular α + β = 25.5 is nearly twice the rather precise
value determined from Baldin’s sum rule eq. (4).

The spin polarizabilities have also been calculated in
HBChPT. The O(ε3) predictions for the proton are [16] :
γ0 = 4.6 − 2.4 − 0.2 + 0 = +2.0, and γπ = 4.6 + 2.4 −
0.2 − 43.5 = −36.7, the 4 separate contributions refer-
ring to Nπ-loops (O(p3) result), ∆-poles, ∆π-loops, and
the triangle anomaly, in that order. It is obvious that the
anomaly or π0-pole gives by far the most important contri-
bution to γπ, and that it would require surprisingly large
higher-order contributions to bring γπ close to the value
of eq. (8). Recently, the Nπ-loop contribution to the spin
polarizabilities have been evaluated in HBChPT to O(p4)
by several groups [17–19]. In refs. [17,18], the result for
the proton is γ0 = +4.5 − 8.4, where the two contribu-
tions are the O(p3) and O(p4) Nπ-loop contributions, in
this order. Based on the large O(p4) correction term, the
authors in [17,18] call the convergence of the chiral ex-
pansion into question. However in ref. [19], different re-
sults were obtained for the O(p4) Nπ-loop contributions,
to the 4 spin polarizabilities. It was argued that these dif-
ferences are due to how one defines and extracts the O(p4)
spin-dependent polarizabilities in chiral effective field the-
ories. Following the procedure of ref. [19], which removes
first all one-particle reducible contributions from the spin-
dependent Compton amplitude, the resulting values for
γ0 and γπ of the proton are γ0 = +4.6 − 5.6 = −1.0,
and γπ = +4.6 − 1.2 = +3.4 (without the π0-pole), the
separate contributions being again the O(p3) and O(p4)
Nπ-loop contributions, respectively. For γ0, a convergence
of HBChPT at order O(p4) was not expected [19], whereas
the result for γπ — when adding the π0-pole contribution
— is not compatible with the estimate of eq. (8) obtained
by ref. [13].

In order to refine our present understanding of the nu-
cleon polarizabilities, a better understanding of the con-
vergence of the HBChPT expansion is absolutely neces-
sary, and it is to be hoped that a calculation to O(ε4) will
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clarify the status. On the other hand, it is also indispens-
able to minimize any model dependence in the extraction
of the polarizabilities from the data. To this end, a fixed-t
subtracted dispersion relation (DR) formalism was devel-
oped in ref. [9] for RCS off the nucleon at photon energies
below 500 MeV, as a formalism to extract the nucleon po-
larizabilities with a minimum of model dependence as is
described in the following.

2.2 Fixed-t subtracted dispersion relations for RCS

To perform a dispersion theoretical analysis of Compton
scattering, one has to calculate the 6 independent struc-
ture functions Ai(ν, t), i = 1, ..., 6 (defined in ref. [2]).
They are functions of the usual Mandelstam variable t,
and of ν, defined in terms of the Mandelstam variables s
and u as ν = (s − u)/(4mN), with mN the nucleon mass.
The invariant amplitudes Ai are free of kinematical singu-
larities and constraints, and because of the crossing sym-
metry they satisfy the relation Ai(ν, t) = Ai(−ν, t). As-
suming further analyticity and an appropriate high-energy
behavior, the amplitudes Ai fulfill unsubtracted DR at
fixed t :

Re Ai(ν, t) = AB
i (ν, t) +

2
π

P
∫ +∞

νthr

dν′
ν′ ImsAi(ν′, t)

ν′2 − ν2
,

(9)
where AB

i are the Born (nucleon pole) contributions, and
where ImsAi are the discontinuities across the s-channel
cuts of the Compton process, starting from the thresh-
old for pion production, νthr. However, such unsubtracted
DR require that at high energies (ν → ∞) the ampli-
tudes ImsAi(ν, t) drop fast enough such that the integral
of eq. (9) is convergent and the contribution from the semi-
circle at infinity can be neglected. For real Compton scat-
tering, Regge theory predicts the following high-energy
behavior for ν → ∞ and fixed t [2] :

A1,2 ∼ να(t) , A3,5,6 ∼ να(t)−2 , A4 ∼ να(t)−3 ,
(10)

where α(t) � 1 is the Regge trajectory. Due to the high-
energy behavior of eq. (10), the unsubtracted dispersion
integral of eq. (9) diverges for the amplitudes A1 and A2.
In order to obtain useful results for these two amplitudes,
L’vov et al. [2] proposed to close the contour of the inte-
gral in eq. (9) by a semi-circle of finite radius νmax in the
complex plane (instead of the usually assumed infinite ra-
dius!), i.e. the real parts of A1 and A2 are calculated from
the decomposition

Re Ai(ν, t) = AB
i (ν, t) + Aint

i (ν, t) + Aas
i (ν, t) , (11)

with Aint
i the s-channel integral from pion threshold νthr

to a finite upper limit νmax, and an ‘asymptotic contri-
bution’ Aas

i representing the contribution along the finite
semi-circle of radius νmax in the complex plane. In the ac-
tual calculations, the s-channel integral is typically evalu-
ated up to a maximum photon energy of about 1.5 GeV,
for which the imaginary part of the amplitudes can be

expressed through unitarity by meson photoproduction
amplitudes (mainly 1π and 2π photoproduction) taken
from experiment. All contributions from higher energies
are then absorbed in the asymptotic terms Aas

i , which are
replaced by a finite number of energy-independent poles
in the t-channel. In particular the asymptotic part of A1

is parametrized by the exchange of a scalar particle in
the t-channel, i.e. an effective “σ-meson” [2]. In a simi-
lar way, the asymptotic part of A2 is described by the π0
t-channel pole. This procedure is relatively safe for A2 be-
cause of the dominance of the π0 pole or triangle anomaly,
which is well established both experimentally and on gen-
eral grounds as Wess-Zumino-Witten term. However, it
introduces a considerable model-dependence in the case
of A1.

It was therefore the aim of ref. [9] to avoid the conver-
gence problem of unsubtracted DR and the phenomenol-
ogy necessary to determine the asymptotic contribution.
To this end, it was proposed to consider DR’s at fixed t
that are once subtracted at ν = 0,

Re Ai(ν, t) = AB
i (ν, t) +

[
Ai(0, t)−AB

i (0, t)
]

+
2
π
ν2 P

∫ +∞

νthr

dν′
ImsAi(ν′, t)
ν′ (ν′2 − ν2)

. (12)

These subtracted DR should converge for all 6 invariant
amplitudes due to the two additional powers of ν′ in the
denominator, and they are essentially saturated by the πN
intermediate states. In other words, the less known contri-
butions of two and more pions as well as higher continua
are small and may be treated reliably by simple models.

The price to pay for this alternative is the appearance
of the subtraction functions Ai(ν = 0, t), which have to
be determined at some small (negative) value of t. This
was achieved by setting up once-subtracted DR, this time
in the variable t [9] :

Ai(0, t)−AB
i (0, t) = ai + at-polei

+
t

π

(∫ +∞

(2mπ)2
dt′ −

∫ −2m2
π−4Mmπ

−∞
dt′

)
ImtAi(0, t′)
t′ (t′ − t)

,

(13)

where the six coefficients ai ≡ Ai(0, 0)−AB
i (0, 0) are sim-

ply related to the six polarizabilities α, β, γ1, γ2, γ3, γ4 (see
ref. [9] for details), and where at-polei represents, in the case
of A2, the contribution of the π0 pole in the t-channel.

To evaluate the dispersion integrals, the imaginary
part of the Compton amplitude due to the s-channel cuts
in eq. (12) is determined, through the unitarity relation,
from the scattering amplitudes of photoproduction on the
nucleon. Due to the energy denominator 1/ν′(ν′2 − ν2)
in the subtracted dispersion integrals, the most impor-
tant contribution is from the πN intermediate states, while
mechanisms involving more pions or heavier mesons in the
intermediate states are largely suppressed. In ref. [9], the
πN contribution was then evaluated using the pion pho-
toproduction multipole amplitudes of ref. [11] at photon
energies below 500 MeV, and at the higher energies using
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the SAID multipoles (SP98K solution) [12] as input. The
multipion channels (in particular the ππN channels) were
approximated by the inelastic decay channels of the πN
resonances. It was found, however, that in the subtracted
DR formalism, the sensitivity to the multipion channels
is very small and that subtracted DR are essentially sat-
urated at ν ≈ 0.4 GeV.

The subtracted t-channel dispersion integral in eq. (13)
from 4m2

π to +∞ is essentially saturated by the imaginary
part of the t-channel amplitude γγ → NN̄ due to ππ inter-
mediate states. The dependence of the subtraction func-
tions on momentum transfer t can be calculated by includ-
ing the experimental information on the t-channel process
through ππ intermediate states as γγ → ππ → NN̄. In
ref. [9], a unitarized amplitude for the γγ → ππ subpro-
cess was constructed, and a good description of the avail-
able data was found. This information is then combined
with the ππ → NN̄ amplitudes determined from disper-
sion theory by analytical continuation of πN scattering. In
this way, one avoids the uncertainties in Compton scat-
tering associated with the two-pion continuum in the t-
channel, usually modeled through the exchange of a some-
what fictitious σ-meson. The second integral in eq. (13)
extends from −∞ to −2 (m2

π + 2Mmπ) ≈ −0.56 GeV2.
As we address Compton scattering for photon energies
below about 500 MeV, the value of t stays sufficiently
small so that the denominator in the integral provides a
rather large suppression, resulting in a small contribution.
The contribution along the negative t-cut is estimated in
the calculations [20] by saturation with ∆ intermediate
states. Altogether the remaining uncertainties in the s-
and t-channel subtracted integrals due to unknown high-
energy contributions, are estimated to be less than 1%. As
a consequence, this subtracted DR formalism provides a
direct cross check between Compton scattering and one-
pion photoproduction.

Although all 6 subtraction constants a1 to a6 of
eq. (13) could be used as fit parameters in the present
formalism, the fit was restricted to the parameters a1
and a2, or equivalently to α − β and γπ in [9]. The sub-
traction constants a4, a5 and a6 were calculated through
an unsubtracted sum rule (eq. (9) for ν = t = 0). The
remaining subtraction constant a3, related to α + β by
α+ β = −(a3+ a6)/(2π), was fixed through Baldin’s sum
rule [5], using the value α+ β = 13.69× 10−4 fm3 [7].

2.3 Results for RCS observables

Since the polarizabilities enter as subtraction constants,
the subtracted dispersion relations can be used to extract
the nucleon polarizabilities from RCS data with a mini-
mum of model dependence. The present formalism can be
applied up to photon energies of about 500 MeV.

Below pion production threshold, RCS data were usu-
ally analyzed to extract α and β. However, it was shown
that the sensitivity to γπ is not at all negligible, especially
at the backward angles and the higher energies, so that
both α− β and γπ should be fitted simultaneously [9].

RCS above pion threshold can serve as a complement
to determine the polarizabilities, in particular the spin
polarizabilities, and can provide valuable cross checks be-
tween Compton scattering and pion photoproduction, pro-
vided one can minimize the model uncertainties in the dis-
persion formalism. The three types of dispersion integrals
of eqs. (12) and (13) in the formalism outlined here are
evaluated as described above. As a representative result
obtained within the subtracted DR formalism, the RCS
differential cross-sections above pion threshold are shown
in fig. 1 at fixed α− β = 10 (here and in the following in
units of 10−4 fm3), while γπ is varied between −27 (here
and in the following in units of 10−4 fm4) and −37 (for
more details, see refs. [9,20]). By comparing all available
data above pion threshold, it was concluded [9] that there
is no consistency between the pion photoproduction data
from MAMI (entering through the dispersion integrals)
and available Compton scattering data, in particular when
comparing with the LEGS data, which were used in the
extraction of eq. (8) for γπ. Therefore, new data in the ∆
region are called for, some of which have recently become
available [21]. An analysis of those unpolarized data in
a dispersion formalism favors also a much more negative
value for γπ than extracted in eq. (8). The fit performed by
ref. [21] yields α− β = 9.1 ± 1.7(stat + syst) ±1.2(mod),
when using a value of γπ = −37.6.
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Fig. 1. Differential cross-section for Compton scattering off
the proton as a function of the c.m. photon angle for different
lab energies. The total results of the subtracted DR formalism
are presented for fixed α − β = 10 and different values of γπ :
γπ = −37 (dashed-dotted lines), γπ = −32 (full lines) and γπ

= -27 (dashed lines). The references to the data can be found
in [9].



460 The European Physical Journal A

Besides the existing information from unpolarized
data, a full study of the spin (or vector) polarizabilities
will however require double polarization experiments. It
was in fact shown [9] that the scattering of polarized pho-
tons on polarized protons is very sensitive to γπ, in partic-
ular in the backward hemisphere and at energies between
threshold and the ∆ region. In addition, possible normal-
ization problems can be avoided by measuring appropriate
asymmetries. Therefore, future polarization experiments
hold the promise to disentangle the scalar and vector po-
larizabilities of the nucleon with the help of the described
subtracted DR formalism, and to further quantify the nu-
cleon spin response in an external electromagnetic field.

2.4 Higher-order polarizabilities of the proton

As outlined above, the electric and magnetic polarizabili-
ties arise as O(ν2) corrections to the lowest-order (Thom-
son) scattering amplitude. One can then ask the question
whether Compton scattering can also provide additional
proton structure information via the use of higher-order
polarizabilities. If one extends the analysis to consider
spin-averaged O(ν4) terms (see ref. [22] for details), four
new structures fulfill the requirements of gauge, P, and T
invariance. Two new quantities, αp

Eν and βpMν , represent
dispersive corrections to the lowest-order static polariz-
abilities, α and β respectively, and describe the response
of the system to time-dependent fields. Two more quan-
tities αp

E2, β
p
M2, represent quadrupole polarizabilities and

measure the electric and magnetic quadrupole moments
induced in a system by the presence of an applied field
gradient.

As to the experimental evaluation of such structure
probes, it is, of course, in principle possible to extract
them directly from Compton cross-section measurements.
However, it is already clear from the previous discussion of
present data, that isolating such pieces from other terms
which affect the cross-section at energies above ∼ 100 MeV
is virtually impossible since additional higher-order effects
soon become equally important. Thus an alternative pro-
cedure is required, which is made possible by the validity
of dispersion relations. Within the subtracted DR formal-
ism of ref. [9] outlined above, those higher order terms
in the expansion of the Compton amplitudes Ai can be
reasonably evaluated as in [22]. These higher-order polar-
izabilities can be expressed in terms of appropriate deriva-
tives of the RCS invariant amplitudes Ai at t, ν2 = 0, de-
noted by ai,t, ai,ν . In terms of subtracted DR’s, they take
the form

ai,ν =
2
π

∫ ∞

νthr

dν′
ImsAi(ν′, t = 0)

ν′3
, (14)

ai,t =
1
π

(∫ ∞

4m2
π

−
∫ −4Mmπ−2m2

π

−∞
dt′
ImtAi(0, t′)

t′2

)
. (15)

The higher-order polarizabilities are then obtained as lin-
ear combinations of the ai,t and ai,ν (for details see [22]).

The subtracted DR in eqs. (14, 15) were evaluated as de-
scribed above and yield (all in units of 10−4 fm5) :

αp
Eν = −3.84− 0.19 + 0.06,

βpMν = +9.29 + 0.15− 0.07,
αp
E2 = +29.31− 0.10− 0.17,

βpM2 = −24.33 + 0.10− 0.34 , (16)

where the second and third entries on the rhs of eq. (16)
estimate the uncertainties in the s- and t-channel disper-
sion integrals.

The values of eq. (16) were then confronted in [22] with
the predictions of HBChPT at O(p3)

O(p3) : αp
Eν = 2.4, βpMν = 3.7,

αp
E2 = 22.1, βpM2 = −9.5 . (17)

By comparing eq. (16) and (17) one finds that the size of
αp
E2 is about right, while for both βpM2 and βpMν the sign
and order of magnitude is correct but additional contribu-
tions are called for. The most serious problem lies in the
experimental determination of αEν which is negative in
contradistinction to the chiral prediction and to sum rule
arguments which assert its positivity. To see if inclusion of
∆(1232) degrees of freedom can help to resolve the above
discrepancies, these quantities were also calculated in [22]
in HBChPT to O(ε3), with the result :

O(ε3) : αp
Eν = 1.7, βpMν = 7.5,

αp
E2 = 26.2, βpM2 = −12.3 . (18)

Except for the sign problem with αp
Eν indicated above,

which persists in the ε-expansion, the changes are gen-
erally helpful, although the magnetic quadrupole polariz-
ability is still somewhat underpredicted.

In [22], the described analysis was also extended to
higher-order contributions O(ν5) to the proton spin po-
larizabilities, for which 8 new structures were found. A
dispersive evaluation of those higher-order spin polariz-
abilities showed a qualitative agreement with HBChPT
O(ε3) predictions.

Recently, an evaluation of the higher-order polarizabil-
ities of the proton in HBChPT to O(p4) has been re-
ported [23], providing an important new testing ground
for the chiral predictions. It was found [23] that the O(p4)
HBChPT result for the 4 quadrupole polarizabilities and
the 8 spin polarizabilities at O(ν5) of the proton are in
encouraging good agreement with the DR estimates of
ref. [22].

In summary, the subtracted DR formalism presented
not only provides a formalism to extract the lowest-
order nucleon polarizabilities from present and forthcom-
ing RCS data with a minimum of model dependence. It
can also be used to obtain information about higher-order
polarizabilities of the proton, in this way providing a great
deal of additional nucleon structure information.
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3 Virtual Compton scattering (VCS) and
generalized nucleon polarizabilities

3.1 Introduction

The nucleon structure information obtained through RCS,
as discussed in section 2, can be generalized by virtual
Compton scattering (VCS) below pion threshold. VCS can
be interpreted as electron scattering off a target polarized
by the presence of constant electric and magnetic fields.
To see how VCS generalizes the RCS process, it is useful
to think of the analogy with the electromagnetic form fac-
tors. Their measurement through elastic electron-nucleon
scattering reveals the spatial distribution of the charge
and magnetization distributions of the target, whereas a
real photon is only sensitive to the overall charge and mag-
netization of the target. The physics addressed with VCS
is then the same as if one were performing an elastic elec-
tron scattering experiment on a target placed between the
plates of a capacitor or between the poles of a magnet. In
this way one studies the spatial distributions of the polar-
ization densities of the target, by means of the generalized
polarizabilities, which are functions of the square of the
four-momentum, Q2, transferred by the electron.

Experimentally, the VCS process is accessed through
the electroproduction of photons, and we consider in all
of the following the reaction on a proton target, i.e. the
reaction ep → epγ. One immediately sees a difference
with regard to the RCS γp → γp reaction, because in
the ep → epγ reaction, the final photon can be emitted
either by the proton, giving access to the VCS process, or
by the electrons, which is referred to as the Bethe-Heitler
(BH) process. The BH amplitude can be calculated ex-
actly in QED, provided one knows the elastic form factors
of the proton. Therefore it contains no new information on
the structure. Unfortunately, light particles such as elec-
trons radiate much more than the heavy proton. Therefore
the BH process generally dominates or at least interferes
strongly with the VCS process, and this may complicate
the interpretation of the ep→ epγ reaction. The only way
out of this problem is either to find kinematical regions
where the BH process is suppressed or to have a very good
theoretical control over the interference between the BH
and the VCS amplitudes, as will be discussed below.

Assuming that this problem is fixed, one can then pro-
ceed to extract the nucleon structure information from
VCS. In doing so, care has to be taken to separate the triv-
ial response of the target, due to its global charge and/or
a global magnetic moment. Indeed, if we put a proton
in an electric field, the first effect we observe is that it
moves as a whole. Similarly, the magnetic field produces
a precession of the magnetic moment. This problem is ab-
sent when one studies the polarizability of a macroscopic
sample because it can be fixed in space by appropriate
means, which is not possible for the proton. This absence
of a restoring force explains why the trivial response due
to the motion of charge and magnetic moment dominates
over the response of the internal degrees of freedom. This
is the physical origin of the low-energy theorem (LET) [24]
for VCS. All what is needed to calculate this part of the

response, are the parameters which control the motion,
that is the mass, the charge, and the magnetic moment.
Once the motion is known, one can compute the ampli-
tude for scattering an electron on this moving proton, the
so-called Born amplitude. Having separated the trivial re-
sponse, one can parametrize the structure part of interest
in the VCS process through the so-called generalized po-
larizabilities (GP’s) as in ref. [25].

3.2 Definition of generalized polarizabilities

The known BH + Born parts of the VCS amplitude at low
energy start at order 1/q′ in an expansion in the outgoing
photon energy q′. The LET [24] asserts that the non triv-
ial part of the VCS amplitude, the so-called non-Born part
(denoted by HNB), begins at order q′. There is of course
also a contribution of order q′ in the BH + Born ampli-
tude, but this term is exactly known and therefore can be
subtracted, at least in principle. So what is needed next
is an adequate parametrization of HNB. For this purpose,
a multipole expansion (in the c.m. frame) was performed
in [25] in order to take advantage of angular momentum
and parity conservation. The behaviour of the non-Born
VCS amplitude HNB at low energy (q′ → 0) but at arbi-
trary three-momentum q of the virtual photon, was then
parametrized by 10 functions of q defined by

Limit of
1
q′
1
qL

H
(ρ′1,ρL)S
NB (q′, q) when q′ → 0. (19)

In this notation, ρ (ρ′) refers to the electric (2), mag-
netic (1) or longitudinal (0) nature of the initial (final)
photon, L (L′ = 1) represents the angular momentum of
the initial (final) photon, whereas S differentiates between
the spin-flip (S = 1) and non spin-flip (S = 0) charac-
ter of the electromagnetic transition at the nucleon side.
As the angular momentum of the outgoing photon is L′
= 1, this leads to 10 q-dependent GP’s, denoted generi-
cally by P (ρ′ L′,ρ L)S(q). By imposing the constraints due
to nucleon crossing combined with charge conjugation in-
variance on the VCS amplitude, it was shown however in
[26,27] that 4 of the GP’s can be eliminated. Thus only 6
GP’s , e.g., [1]

P (01,01)0(q), P (11,11)0(q),

P (01,01)1(q), P (11,11)1(q), P (11,02)1(q), P (01,12)1(q), (20)

are necessary to give the low-energy behaviour of HNB.
In the limit q→ 0 for the GP’s, one finds the following

relations with the polarizabilities (in gaussian units) of
RCS, as discussed in section 2 [28] :

P (01,01)0(0) = − 1
αem

√
2
3
α ,

P (11,11)0(0) = − 1
αem

√
8
3
β ,

P (01,12)1(0) = − 1
αem

√
2
3

γ3 ,
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P (11,02)1(0) = − 1
αem

2
√
2

3
√
3
(γ2 + γ4) ,

P (01,01)1(0) = 0 ,

P (11,11)1(0) = 0 , (21)

where αem = 1/137.036 is the QED fine structure con-
stant.

3.3 VCS observables

We next discuss how one can analyze ep → epγ observ-
ables to extract the 6 GP’s of eq. (20).

The VCS unpolarized squared amplitude is denoted
byM. Besides, one can consider VCS double polarization
observables, which are denoted by ∆M(h, i) for an elec-
tron of helicity h, and which are defined as a difference
of the squared amplitudes for recoil (or target) proton
spin orientation in the direction and opposite to the axis
i (i = x, y, z) (see ref. [29] for details). In an expansion in
q′, M and ∆M take the form

Mexp =
Mexp

−2

q′2
+

Mexp
−1

q′
+Mexp

0 +O(q′),

∆Mexp =
∆Mexp

−2

q′2
+
∆Mexp

−1

q′
+∆Mexp

0 +O(q′) . (22)

Due to the LET, the threshold coefficients M−2, M−1,
∆M−2,∆M−1 are known. The information on the GP’s is
contained inMexp

0 and ∆Mexp
0 . These coefficients contain

a part which comes from the (BH+Born) amplitude and
another one which is a linear combination of the GP’s with
coefficients determined by the kinematics.

The unpolarized observableMexp
0 was obtained by ref.

[25] in terms of 3 structure functions PLL(q), PTT (q),
PLT (q), which are linear combinations of the 6 GP’s,

Mexp
0 −MBH+Born

0 = 2K2 {v1 [εPLL(q)− PTT (q)]

+
(
v2 − q̃0

q
v3

)√
2ε (1 + ε)PLT (q)

}
, (23)

where K2, ε, q̃0, v1, v2, v3 are kinematical quantities (for
details see ref. [1]).

The three double-polarization observables
∆Mexp

0 (h, i) (i = x, y, z) were expressed by [29] in
terms of three new independent structure functions
P z
LT (q), P

′z
LT (q), and P

′⊥
LT (q), which are also linear

combinations of the 6 GP’s,

∆Mexp
0 (h, z)−∆MBH+Born

0 (h, z)

= 4(2h)K2

{
−v1

√
1− ε2PTT (q)+v2

√
2ε (1− ε)P z

LT (q)

+v3
√
2ε (1− ε)P

′z
LT (q)

}
,

∆Mexp
0 (h, x)−∆MBH+Born

0 (h, x)

= 4(2h)K2

{
vx1

√
2ε (1− ε)P⊥

LT (q) + vx2
√
1− ε2 P⊥

TT (q)

+vx3
√
1− ε2 P

′⊥
TT (q) + vx4

√
2ε (1− ε)P

′⊥
LT (q)

}
,

∆Mexp
0 (h, y)−∆MBH+Born

0 (h, y)

= 4(2h)K2

{
vy1

√
2ε (1−ε)P⊥

LT (q) + vy2
√
1− ε2 P⊥

TT (q)

+vy3
√
1− ε2 P

′⊥
TT (q) + vy4

√
2ε (1− ε)P

′⊥
LT (q)

}
,(24)

where vx1 , ..., v
x
4 , v

y
1 , ..., v

y
4 are kinematical coefficients. The

other structure functions in eq. (24) can be expressed
in terms of PLL, PTT , PLT , P z

LT , P
′z
LT , P

′⊥
LT [1]. Therefore,

measuring those 6 structure functions amounts to deter-
mine the 6 independent GP’s.

3.4 Results for VCS observables below pion threshold

In the previous sections, the observables of the ep→ epγ
reaction below pion threshold were outlined, and it
was shown how the nucleon structure effect can be
parametrized in terms of 6 independent GP’s.

To access the GP’s, the experimental strategy of VCS
in the threshold region consists of two steps. First, one
measures the VCS cross-section at several values of the
outgoing photon energy. At low energies, the measurement
of the VCS observables provides a test of the LET. Once
the LET is verified, the relative effect of the GP’s can be
extracted using eqs. (23,24).

The predictions for the Bethe-Heitler (BH) and Born
cross-sections below pion threshold are shown in fig. 2.
The BH cross-section has a characteristic angular shape
and displays two “spikes”, which occur when the direction
of the outgoing photon coincides with either the initial or
final electron directions. In these regions, the cross-section
is completely dominated by the BH contributions. In or-
der to determine the VCS contribution, one clearly has to
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Θγγ 
c.m.
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Fig. 2. Results for the BH (dashed-dotted curve), Born
(dashed curve) and BH+Born (full curve) p(e, e′ p)γ differ-
ential cross-sections in MAMI kinematics : q = 600 MeV/c,
q′ = 111.5 MeV/c and ε = 0.62, as function of the c.m. an-
gle Θγγ

c.m. between real and virtual photon, and for in-plane
kinematics. Calculations from ref. [30].
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minimize the BH contamination by detecting the photon
in the half-plane opposite to the electron directions.

The first dedicated VCS experiment has been per-
formed at MAMI, and for the first time two combinations
(see eq. (23)) of GP’s have been determined at Q2 = 0.33
GeV2 and photon polarization ε = 0.62 [31],

PLL(Q2)− 1
ε
PTT (Q2) = (23.7± 2.2± 0.6± 4.3) GeV2 ,

PLT (Q2) = (−5.0± 0.8± 1.1± 1.4) GeV2. (25)

VCS experiments at higher Q2 (1 - 2 GeV2) at JLab [32],
and at lower Q2 at MIT-Bates [33] have already been per-
formed, and are under analysis at this time.

The GP’s have been calculated in various approaches
and nucleon structure models, ranging from constituent
quark models [25,34], a relativistic effective Lagrangian
model [30], and the linear σ-model [35] to ChPT [36,37].
The GP’s teach us about the interplay between nucleon-
core excitations and pion-cloud effects, which are de-
scribed differently in the various models. We focus here
on the calculation of the GP’s in HBChPT to O(p3), as
it takes account of Nπ-loop contributions in a systematic
way. The O(p3) calculation yields for the two measured
combinations at Q2 = 0.33 GeV2 and ε = 0.62 of eq. (25)
the values [37] :

O(p3) : PLL − PTT /ε = 26.3 GeV2,

PLT = −5.7 GeV2, (26)

which are in astonishing agreement with the experimen-
tally determined values of eq. (25). In particular, the
O(p3) ChPT calculation predicts quite large values for
the spin GP’s. As for the case of the RCS polarizabili-
ties, the importance of the O(p4) corrections remains to
be checked.

If one wants to extract the different polarizabilities
from experiment, and in particular in case of the spin po-
larizabilities, an unpolarized experiment is not sufficient
as it gives access to 3 independent response functions only.
To further separate the polarizabilities, one has to resort
to double-polarization observables. Experimentally, at the
existing high-duty-cycle electron facilities with polarized
electron beams such as MAMI, MIT-Bates and JLab, dou-
ble polarization VCS experiments can be performed by
measuring the recoil polarization of the outgoing nucleon
with a focal plane polarimeter. An experiment at MAMI
has already been proposed [38].

In fig. 3, the double-polarization asymmetry of
eq. (24), with proton recoil polarization either along the
x- or z- directions, is shown at q = 600 MeV/c for in-
plane kinematics. It is seen that the asymmetry yields a
very large value (between 0.6 and 0.7) if the final proton
is polarized parallel to the virtual photon.

3.5 Dispersion relation formalism for VCS

At present, VCS experiments at low outgoing photon en-
ergies are analyzed in terms of low-energy expansions

pfin  pol along z

Φγγ = 0o

pfin  pol along x

Φγγ = 0o

Fig. 3. VCS double-polarization asymmetries (polarized elec-
tron, proton recoil polarization along either the x- or z-
directions) in MAMI kinematics (Q2 = 0.33 GeV2) as function
of the c.m. angle between real and virtual photon. The BH +
Born result is shown by the dashed curves. The other curves
show predictions from different model contributions calculated
in ref. [29], to which we refer for details.

(LEXs) of eq. (22). In the LEX, the non-Born response
of the system to the quasi-constant electromagnetic field
of the low energetic photon is proportional to the GP’s,
as expressed in eqs. (23,24). As the sensitivity of the VCS
cross-sections to the GP’s grows with the photon energy, it
is advantageous to go to higher photon energies, provided
one can keep the theoretical uncertainties under control
when crossing the pion threshold. The situation can be
compared to RCS, for which one uses a dispersion relation
formalism as discussed in section 2, to extract the polar-
izabilities at energies above pion threshold, with generally
larger effects on the observables.

In order to go to higher energies and to check the valid-
ity of LEXs at these higher energies, a dispersion relation
analysis for VCS has been developed very recently [39,
40], which will allow to extract the GP’s from data over
a larger energy range. The same formalism also provides
for the first time a dispersive evaluation of 4 GP’s.

To set up a dispersion formalism for the VCS process,
one starts from the helicity amplitudes :

Tλ′s′;λs = − e2εµ(q, λ) ε
′∗
ν (q

′, λ′) ū(p′, s′)Mµνu(p, s),
(27)

with e the electric charge, q (q′) the four-vectors of the
virtual (real) photon in the VCS process, and p (p′) the
four-momenta of the initial (final) nucleons respectively.
The nucleon helicities are denoted by s, s′ = ±1/2, and
u, ū are the nucleon spinors. The initial virtual photon
has helicity λ = 0,±1 and polarization vector εµ, whereas
the final real photon has helicity λ′ = ±1 and polariza-
tion vector ε

′
ν . The VCS process is characterized by 12

independent helicity amplitudes Tλ′s′;λs.



464 The European Physical Journal A

The VCS tensorMµν in eq. (27) is then expanded into
a basis of 12 independent gauge invariant tensors ρµνi ,

Mµν =
12∑
i=1

Fi(Q2, ν, t) ρµνi , (28)

as introduced in ref. [26] (starting from the amplitudes of
ref. [41]). The amplitudes Fi in eq. (28) contain all nucleon
structure information and are functions of 3 invariants for
the VCS process : Q2 ≡ −q2, ν = (s − u)/(4mN) which
is odd under s ↔ u crossing, and t. The Mandelstam
invariants s, t and u for VCS are defined by s = (q + p)2,
t = (q − q′)2, and u = (q − p′)2, with the constraint s +
t+ u = 2m2

N −Q2, and mN is the nucleon mass.
Nucleon crossing combined with charge conjugation

provides the following constraints on the amplitudes Fi
1 at arbitrary virtuality Q2 :

Fi
(
Q2,−ν, t) = Fi

(
Q2, ν, t

)
(i = 1, ..., 12). (29)

With the choice of the tensor basis of ref. [26], the result-
ing non-Born amplitudes FNB

i (i = 1,...,12) are free of all
kinematical singularities and constraints.

Assuming further analyticity and an appropriate high-
energy behavior, the non-Born amplitudes FNB

i (Q2, ν, t)
fulfill unsubtracted dispersion relations (DR’s) with re-
spect to the variable ν at fixed t and fixed virtuality Q2 :

Re FNB
i (Q2, ν, t) =

2
π
P

∫ +∞

νthr

dν′
ν′ ImsFi(Q2, ν′, t)

ν′2 − ν2
,

(30)
with ImsFi the discontinuities across the s-channel cuts
of the VCS process. Since pion production is the first in-
elastic channel, νthr = mπ + (m2

π + t/2 + Q2/2)/(2mN),
where mπ denotes the pion mass.

The unsubtracted DR’s of eq. (30) require that at suf-
ficiently high energies (ν → ∞ at fixed t and fixed Q2) the
amplitudes ImsFi(Q2, ν, t) (i = 1,...,12) drop fast enough
such that the integrals are convergent and the contribu-
tions from the semi-circle at infinity can be neglected. It
turns out that for two amplitudes, F1 and F5, an unsub-
tracted dispersion integral as in eq. (30) does not exist
[39], whereas the other 10 amplitudes can be evaluated
through unsubtracted dispersion integrals. This situation
is similar as for RCS, where 2 of the 6 invariant amplitudes
cannot be evaluated by unsubtracted dispersion relations
either [2].

The unsubtracted DR formalism for VCS also allows
to predict 4 of the 6 GP’s. The appropriate limit in the
definition of the GP’s is q′ → 0 at finite q (see eq. (19)),
which corresponds in terms of VCS invariants to ν → 0
and t → −Q2 at finite Q2. One can therefore express the
GP’s in terms of the VCS amplitudes Fi at the point
ν = 0, t = −Q2 at finite Q2, denoted in the following
as : F̄i(Q2) ≡ FNB

i

(
Q2, ν = 0, t = −Q2

)
. The relations

1 In [39], 4 of the 12 amplitudes of [26] were redefined by
dividing them through ν, such that all of them are even func-
tions of ν. This simplifies the formalism since only one type of
dispersion integrals needs to be considered then.

between the GP’s and the F̄i(Q2) can be found in ref. [26].
From the high-energy behavior for the VCS invariant am-
plitudes, it follows that one can evaluate the F̄i (for i �=
1, 5) through the unsubtracted DR’s

F̄i(Q2) =
2
π

∫ +∞

νthr

dν′
ImsFi(Q2, ν′, t = −Q2)

ν′
. (31)

Unsubtracted DR’s for the GP’s will therefore hold for
those combinations of GP’s that do not depend upon the
amplitudes F̄1 and F̄5

2. Among the 6 GP’s, the following
4 combinations of GP’s were found in ref. [39] :

P (01,01)0 +
1
2
P (11,11)0 =

−2√
3

(
E +mN

E

)1/2

mN q̃0

×
{
q2

q̃20
F̄2 +

(
2 F̄6 + F̄9

) − F̄12

}
, (32)

P (01,01)1 =
1
3
√
2

(
E +mN

E

)1/2

q̃0

×{(
F̄5 + F̄7 + 4 F̄11

)
+ 4mN F̄12

}
, (33)

P (01,12)1 − 1√
2 q̃0

P (11,11)1 =
1
3

(
E +mN

E

)1/2
mN q̃0
q2

×{(
F̄5 + F̄7 + 4 F̄11

)
+ 4mN

(
2 F̄6 + F̄9

)}
, (34)

P (01,12)1 +
√
3
2
P (11,02)1 =

1
6

(
E +mN

E

)1/2
q̃0
q2

×{
q̃0

(
F̄5 + F̄7 + 4 F̄11

)
+ 8m2

N

(
2 F̄6 + F̄9

)}
, (35)

where E =
√
q2 +m2

N denotes the initial proton c.m. en-
ergy, and q̃0 = mN − E the virtual photon c.m. energy
in the limit q′ = 0. Unfortunately, the 4 combinations of
GP’s of eqs. (32)-(35) can at present not yet be compared
with the data. In particular, the only unpolarized experi-
ment [31] measured two structure functions which cannot
be evaluated in an unsubtracted DR formalism, as they
contain in addition to P (01,01)0 + 1/2P (11,11)0 of eq. (32),
which is proportional to α+ β at Q2 = 0, also the gener-
alization of α− β.

The 4 combinations of GP’s on the lhs of eqs. (32)-(35)
can then be evaluated by unsubtracted DR’s, from the
dispersion integrals of eq. (31) for the F̄i(Q2). To this end,
the imaginary parts ImsFi in eq. (31) have to be calculated
by use of unitarity. For the VCS helicity amplitudes of
eq. (27) (denoted for short by Tfi), the unitarity equation
reads

2 Ims Tfi =
∑
X

(2π)4δ4(PX − Pi)T
†
Xf TXi , (36)

where the sum runs over all possible intermediate states
X that can be formed. In ref. [39], the dispersion integrals
of eq. (31) were saturated by the dominant contribution
of the πN intermediate states. For the pion photo- and

2 F̄5 can appear however in the combination F̄5 + 4 F̄11, in
which the π0-pole drops out, and which has a high-energy be-
havior leading to a convergent integral (see ref. [39]).
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electroproduction helicity amplitudes in the range Q2 ≤
0.5 GeV2, the phenomenological analysis of MAID [42]
was used, which contains both resonant and non-resonant
pion production mechanisms.

P(01,01)0+ 1/2 P(11,11)0 P(01,01)1

P(01,12)1-1/(√2
—

 q
~

0) P
(11,11)1

P(01,12)1 + √3
—

/2 P(11,02)1

Fig. 4. Dispersion results [39] for 4 of the generalized polar-
izabilities of the proton (full curves), compared with results of
O(p3) HBChPT [36,37] (dashed curves) and the linear σ-model
[35] (dash-dotted curves).

In fig. 4, the results for the 4 combinations of GP’s
of eqs. (32)-(35) are shown in the DR formalism, and
compared to the results of the O(p3) heavy-baryon chi-
ral perturbation theory (HBChPT) [36,37] and the linear
σ-model [35]. The πN contribution to the sum P (01,01)0

+ 1/2P (11,11)0 gives only about 80% of the Baldin sum
rule [7], because of a non-negligible high-energy contri-
bution (of heavier intermediate states) to the photoab-
sorption cross-section entering the sum rule, which is not
estimated here. On the other hand, for the 3 combinations
of spin polarizabilities of eqs. (33)-(35), the dispersive es-
timates with πN states are expected to provide a rather
reliable guidance. By comparing the DR results with those
of HBChPT at O(p3), one remarks a rather good agree-
ment for P (01,12)1 +

√
3/2P (11,02)1, whereas for the GP’s

P (01,01)1 and P (01,12)1 - 1/(
√
2 q̃0)P (11,11)1, the dispersive

results drop much faster with Q2. This trend is also seen
in the relativistic linear σ-model, which takes account of
some higher orders in the chiral expansion. It remains to
be checked how the O(p4) corrections in HBChPT change
this comparison with the DR estimates.

To complete the DR formalism for VCS, one further
needs to construct the VCS amplitudes F1 and F5, for
which the unsubtracted dispersion integrals of eq. (30) do
not converge. One strategy is to proceed in an analogous
way as has been proposed in ref. [2] in the case of RCS.

The unsubtracted dispersion integrals for F1 and F5 are
evaluated along the real ν-axis in a finite range −νmax ≤
ν ≤ +νmax (with νmax ≈ 1.5 GeV). The integral along
a semi-circle of finite radius νmax in the complex ν-plane
is described by the asymptotic contribution F as

i , which
is parametrized by t-channel poles (e.g., for Q2 = 0, F as

1

corresponds to σ-exchange, and F as
5 to π0-exchange).

A full study of VCS observables within such a dis-
persion formalism, including a parametrization of the two
asymptotic contributions, is presently underway [43]. This
will yield a formalism to extract the nucleon GP’s over a
larger range of energies from both unpolarized and polar-
ized VCS data.

4 Compton scattering at large momentum
transfer and the nucleon distribution
amplitude

4.1 Introduction

Besides the low-energy region, as discussed in section 2,
RCS will also provide access to information on the par-
tonic structure of the nucleon at sufficiently large momen-
tum transfer.

This regime is defined by requiring that all three Man-
delstam variables (s, t, u) be large with respect to a typ-
ical hadronic scale, say 1 GeV. In this case there is a
prejudice (actually proven in the case of elastic electron
scattering [44]) that the amplitude factorizes in a soft
non-perturbative part, the distribution amplitude, and a
hard scattering kernel which is calculable from perturba-
tive QCD (PQCD). Because of asymptotic freedom, the
perturbative approach must be to some degree relevant to
the hard-scattering regime. However, since the binding of
the quarks and gluons in the hadrons is a long distance,
non-perturbative effect, the description of the reaction re-
quires a consistent analysis of both large and small scales.
When the reaction is hard enough, the relative velocities
of the participating particles are nearly lightlike. Time
dilatation increases the lifetime of the quantum configu-
rations which build the hadron. As a result, the partonic
content, as seen by the other particles, is frozen. More-
over, due to the apparent contraction of the hadron size,
the time during which momentum can be exchanged is

{ { {

Long distance Long distanceShort distance

Fig. 5. Factorization of the RCS scattering amplitude in the
hard scattering regime.



466 The European Physical Journal A

decreased. Therefore one expects a lack of coherence be-
tween the long-distance confining effects and the short-
distance reaction. This incoherence between the soft and
hard physics is the origin of the factorization which is il-
lustrated in fig. 5.

4.2 Factorization and the nucleon distribution
amplitude

The calculation of the RCS amplitude at large momen-
tum transfer, follows the Brodsky-Lepage formalism [45],
which leads to the factorized expression

T (λ′, h′N, λ, hN) =∫
dxi dyj φ∗

N(yj)TH(λ
′, h′N, yj , λ, hN, xi; s, t)φN(xi),

(37)

where (xi, yi) are the momentum fractions of the quarks
in the initial and final nucleon respectively, TH is the hard-
scattering kernel and φN is the distribution amplitude
(DA). The evaluation of eq. (37) requires a four-fold con-
volution integral since there are two constraint equations
(x1 + x2 + x3 = 1 and y1 + y2 + y3 = 1). In eq. (37) a suf-
ficiently large momentum transfer is assumed in order to
neglect the transverse-momentum dependence of the par-
tons in the hard scattering amplitude TH. In this limit,
the integration over the transverse momenta k⊥i (where∑

i k⊥i = 0) acts only on the valence wave function

ΨV(x1, x2, x3;k⊥1,k⊥2,k⊥3) , (38)

which is the amplitude of the three quark state in the Fock
expansion of the proton:

| P 〉 = ΨV | qqq〉+ Ψqq | qqq, qq〉+ Ψg | qqq, g〉
+... (39)

This valence wave function ΨV integrated up to a scale
µ (which separates the soft and hard parts of the wave
function) defines the DA which appears in eq. (37) :

φN(xi, µ) =
∫ µ

d2k⊥i ΨV(xi;k⊥i) . (40)

For µ much larger than the average value of the transverse
momentum in the proton, this function φN depends only
weakly on µ [45] and this dependence can be neglected.

The interest of the formalism is that the distribution
amplitude is universal, that is independent of the partic-
ular reaction considered. Several distribution amplitudes
have been modeled using QCD sum rules [46–48]. They
have a characteristic shape and predict that in a proton,
the u-quark with helicity along the proton helicity carries
about 2/3 of its longitudinal momentum (see fig. 6 ).

For the computation of the hard scattering amplitude
TH (black circle in fig. 5), the leading-order PQCD contri-
bution corresponds to the exchange of the minimum num-
ber of gluons (two in the present case) between the three

quarks. The number of diagrams grows rapidly with the
number of elementary particles involved in the reaction
(42 diagrams for the nucleon form factor, 336 diagrams in
the case of real or virtual Compton scattering). Despite
the large number of diagrams, the calculation of TH is
a parameter free calculation once the scale ΛQCD ≈ 200
MeV in the strong coupling αs(Q2) is given. Note that
configurations with more than three valence quarks are a
priori allowed but since this implies the exchange of more
hard gluons, the corresponding contribution is suppressed
by powers of 1/t.

Fig. 6. Model distribution amplitudes for the nucleon : KS
(upper figure) and COZ (lower figure), as a function of the
valence quark momentum fractions x1 and x2 (x1 + x2 + x3 =
1).

There are two characteristic features of the Brodsky-
Lepage model which are almost direct consequences of
QCD: the dimensional counting rules [49] and the con-
servation of hadronic helicities [50]. The latter feature im-
plies that any helicity flip amplitude is zero and, hence,
any single spin asymmetry too. The helicity sum rule is a
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consequence of utilizing the collinear approximation and
of dealing with (almost) massless quarks which conserve
their helicities when interacting with gluons. Whereas the
dimensional counting rules are in reasonable agreement
with experiment, the helicity sum rule seems to be vio-
lated even at moderately large momentum transfers. The
prevailing opinion is that these phenomena cannot be ex-
plained in terms of perturbative QCD (see, for example,
ref. [51]), but rather are generated by an interplay of per-
turbative and non-perturbative physics.

An interesting aspect of real and virtual Compton scat-
tering is that these are the simplest processes in which the
integrals over the longitudinal momentum fractions yield
imaginary parts. The reason is that, as in any scatter-
ing process, there are kinematical regions where internal
quarks and gluons can go on their mass shell. The ap-
pearance of imaginary parts to leading order in αs is a
non-trivial prediction of PQCD, which should be tested
experimentally. As discussed in [1], the (e, e′ γ) reaction
with polarized incoming electrons seems to be a good can-
didate for this investigation.

In contrast to the PQCD (or hard scattering) ap-
proach to RCS, it was argued in refs. [52,53] that wide
angle Compton scattering at accessible energies is de-
scribed by a competing mechanism, in which the large
momentum transfer is absorbed on a single quark and
shared by the overlap of high-momentum components in
the soft wave function. This so-called soft-overlap mecha-
nism gives a purely real amplitude, therefore displaying a
different signature than the PQCD amplitude. The tran-
sition from such a soft-overlap mechanism to the pertur-
bative, hard scattering approach when increasing the mo-
mentum transfer is an open question for a reaction such
as wide angle Compton scattering (WACS). It is hoped
that future experiments can shed light on this transition.

4.3 Results for RCS in PQCD

The leading-order PQCD prediction for RCS at large mo-
mentum transfer has been calculated several times in the
literature [54–58].

The first step in such a calculation consists of evaluat-
ing the 336 diagrams entering the hard scattering ampli-
tude TH for RCS. Next, the four-fold convolution integral
of eq. (37) has to be performed to obtain the Compton he-
licity amplitudes. The numerical integration requires some
care because the quark and/or gluon propagators can go
on-shell which leads to (integrable) singularities. The dif-
ferent numerical implementations of these singularities are
probably the reason of the different results obtained in the
literature.

In refs. [54,55], the propagator singularities were inte-
grated by taking a finite value for the imaginary part +iε
of the propagator. The behavior of the result was then
studied by decreasing the value of ε. To obtain conver-
gence with a practical number of samples in the Monte
Carlo integration performed in [54,55], the smallest feasi-
ble value for ε was ε ≈ 0.005. In ref. [56], the propagator

singularities were integrated by decomposing the propaga-
tors into a principal value (off-shell) part and an on-shell
part. Both methods were implemented and compared in
ref. [57], and it was found that the +iε method yields
differences of the order of 10% for every diagram as com-
pared with the result of the principal value method. It is
not surprising that, when summing hundreds of diagrams,
an error of 10% on every diagram can easily be amplified
due to the interference between the diagrams.

To have confidence in the evaluation of the convolution
of eq. (37), the principal value integration method was
compared in ref. [57] with a third independent method.
This third method starts from the observation that the
diagrams can be classified into four categories depending
upon the number of propagators which can develop sin-
gularities : in the present case this number is 0, 1, 2 or
3. Besides the trivial case of zero singularities which can
be integrated immediately, the diagrams with one or two
propagator singularities can be integrated by performing
a contour integration in the complex plane for one of the
four integrations. For the most difficult case of three prop-
agator singularities, it was found to be possible to evalu-
ate the diagram by performing two contour integrations
in the complex plane. In doing so, one achieves quite a
fast convergence because the integrations along the real
axis are replaced by integrations along semi-circles in the
complex plane which are far from the propagator poles.
This method was compared with the principal value in-
tegration method, and the same results were found up to
0.1% for each type of singularity [57]. The principal value
method was however found to converge much slower and
is more complicated to implement, especially for the case
with three singularities due to the coupled nature of the
three principal value integrals.

Comparing the results of ref. [57] with those of ref. [56],
a rather good agreement was found for all helicity ampli-
tudes, except for the helicity amplitude where both pho-
ton and proton helicities are positive, in which case both
calculations differ strongly. Very recently, the PQCD cal-
culation for RCS at large momentum transfer has been
recalculated again in ref. [58], by also performing convolu-
tion integrals through contour integrations in the complex
plane. The authors of ref. [58] also find a strong difference
with the results of [56] for the same helicity amplitude,
where both photon and proton helicities are positive. Fur-
thermore, in the angular region around 90◦, where the
PQCD formalism is supposed to be applicable, the au-
thors of ref. [58] find a good agreement with the calcula-
tions of ref. [57], keeping in mind that there is an over-
all normalization uncertainty in these PQCD calculations
for RCS, associated with αs and the valence quark wave
function normalization. The remaining difference between
the results of refs. [57] and those of ref. [58] seems to be
isolated to a single helicity amplitudes and appears for
backward scattering angles. We therefore limit ourselves
in the following discussion to the results in the angular
region around 90◦ where the calculations of refs. [57] and
[58] are in good agreement, and which is the most relevant
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Fig. 7. Unpolarized Compton cross-section on the proton for
different nucleon DA’s : KS (full curve), COZ (dashed-dotted
curve), CZ (dashed curve) and asymptotic DA (dotted curve).
Calculations are from ref. [57], where also the references of the
data can be found.

region for the PQCD calculation as it corresponds to the
largest momentum transfer for a given photon energy.

In figs. 7 and 8, the PQCD calculations for RCS are
shown for several model DA’s denoted as CZ [46], COZ
[47], KS [48], and the asymptotic DA.

The highest energy data which exist for real Comp-
ton scattering were taken around 5 GeV and are shown
in fig. 7. Although the energy at which these experiments
were performed is probably too low to justify a PQCD cal-
culation, the comparison with these data is nevertheless
shown in fig. 7 for illustrative purposes. The normalization
of the calculations shown at these very low scales corre-
sponds to using a frozen coupling constant, with αs ≈ 0.5.

One first notices that the hard scattering amplitude for
RCS has the s-dependence (T ∼ s−2) which leads to the
QCD scaling laws [49], that is dσ

dt ∼ s−6 for Compton scat-
tering or VCS. The unpolarized real Compton differential
cross-section (multiplied by the scaling factor s6) is shown
in fig. 7 as function of the photon c.m. angle. It is observed
that the result with the asymptotic DA (∼ 120x1x2x3) is
more than one decade below the results obtained with the
amplitudes KS, COZ, and CZ, motivated by QCD sum
rules. The results with KS, COZ and CZ show a simi-
lar characteristic angular dependence which is asymmetric
around 90◦. Note that in the forward and backward direc-
tions, which are dominated by diffractive mechanisms, a
PQCD calculation is not reliable. Comparing the results
obtained with KS, COZ and CZ, one notices that although
these DA’s have nearly the same lowest moments, they

KS

CZ

ASYMPTOTIC

COZ

Fig. 8. PQCD calculations of the photon asymmetry on a po-
larized proton target for Compton scattering. Results (from
ref. [57]) are shown for different DA’s as indicated on the
curves.

lead to differences of a factor of two in the Compton scat-
tering cross-section. Consequently, this observable is sen-
sitive enough to distinguish between various distribution
amplitudes, provided, of course, one is in the regime where
the hard scattering mechanism dominates.

In fig. 8, the polarized Compton cross-sections are
shown for the two helicity states of the photon and for
a target proton with positive helicity. One remarks that
for all DA’s there is a marked difference both in magni-
tude and angular dependence between the cross-sections
for the two photon helicities. Consequently, the resulting
photon asymmetry Σ, defined as

Σ↑ =
dσ
dt (↑, λ = 1)− dσ

dt (↑, λ = −1)
dσ
dt (↑, λ = 1) + dσ

dt (↑, λ = −1) , (41)

where λ is the helicity of the incoming photon and ↑ de-
notes a positive hadron helicity, changes sign for the DA’s
KS, COZ, and CZ for different values of Θc.m. as shown
in fig. 8. It is seen that the asymptotic DA on the other
hand yields a very large, negative asymmetry around 90◦.
Therefore, it was suggested in ref. [57] that the photon
asymmetry might be a particularly useful observable to
distinguish between nucleon distribution amplitudes. The
predicted sensitivity of the asymmetry to the nucleon DA
can be used in the extraction of a DA from Compton scat-
tering data in the scaling region. In ref. [57], a procedure
was outlined to extract a DA from Compton data in a
model independent way by first expanding the DA in a
set of basis functions and then using the angular infor-
mation of the cross-sections to fit the expansion coeffi-
cients. It was seen that the precision for these coefficients
is greatly improved when one measures both unpolarized
cross-sections and photon asymmetries.
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A first dedicated experiment to measure the RCS dif-
ferential cross-section and the asymmetry of eq. (41) for
Θc.m. around 90◦, and for a real photon energy of 6 GeV,
is planned at JLab [59]. In particular, it will be interesting
to see if one approaches the PQCD result at these “lower”
energies, and to study the interplay with soft-overlap type
contributions for RCS as proposed in refs. [52,53].

It also remains to be investigated if corrections to the
PQCD amplitudes are very process dependent when com-
paring form factors to a reaction as WACS. It was found
unlikely in ref. [58] that the elastic proton form factors
and WACS are both described by PQCD at accessible en-
ergies, which could imply large process dependent correc-
tions to the PQCD amplitudes. It has further been shown
in [58] that the PQCD and soft-overlap type mechanisms
for WACS yield very different results for several polariza-
tion observables besides the asymmetry of eq. (41). There-
fore such polarization observables have a great discrimina-
tory potential in investigating the reaction mechanism at
intermediate momentum transfers as compared with form
factors.

At higher momentum transfers, RCS experiments us-
ing a real photon energy in the 15 GeV range, might be
feasible, e.g., at the HERA ring in the foreseeable future
[60,61] and might open up prospects to study the nucleon
valence wave function in a direct way.

5 Deeply virtual Compton scattering and
skewed parton distributions

5.1 Introduction

Much of the internal structure of the nucleon has been
revealed during the last two decades through the in-
clusive scattering of high-energy leptons on the nucleon
in the Bjorken -or “Deep Inelastic Scattering” (DIS)-
regime (where the photon virtuality Q2 is very large, and
xB = Q2/2p.q finite). Unpolarized DIS experiments have
mapped out the quark and gluon distributions in the nu-
cleon, while polarized DIS experiments have shown that
only a small fraction of the nucleon spin is carried by the
quarks. This has stimulated new investigations to under-
stand the nucleon spin.

With the advent of the new generation of high-energy,
high-luminosity lepton accelerators combined with large
acceptance spectrometers, a wide variety of exclusive pro-
cesses in the Bjorken regime are considered as experimen-
tally accessible. In recent years, a unified theoretical de-
scription of such processes has emerged through a formal-
ism introducing a new type of parton distributions, com-
monly denoted as skewed parton distributions (SPD’s)
[62–64]. These SPD’s are generalizations of the parton dis-
tributions measured in DIS. It has been shown that these
SPD’s, which parametrize the structure of the nucleon,
allow one to describe, in leading order perturbative QCD
(PQCD), various exclusive processes in the near forward
direction, where the momentum transfer to the nucleon
is small. Such non-forward processes and the associated

SPD’s were already considered in the literature a longer
time ago, see, e.g., [65–69]. The most promising of these
non-forward hard exclusive processes are deeply virtual
Compton scattering (DVCS) and longitudinal electropro-
duction of vector or pseudoscalar mesons at large Q2.

5.2 Definitions and modelizations of skewed parton
distributions

The leading-order PQCD diagrams for DVCS and hard
meson electroproduction are of the type as shown in fig. 9.
The hard scale in fig. 9 is the photon virtuality Q2, which
should be large (of the order of several GeV2), so as to
be in the Bjorken regime. It has been proven [70,71] that
the leading order DVCS amplitude in the forward direc-
tion can be factorized in a hard scattering part (which
is exactly calculable in PQCD) and a soft, nonpertur-
bative nucleon structure part as illustrated on the left
panel of fig. 9. The nucleon structure information can be

Fig. 9. Leading-order diagrams for DVCS (left) and for longi-
tudinal electroproduction of mesons (right).

parametrized, at leading order, in terms of four (quark
helicity conserving) generalized structure functions. These
functions are the SPD’s denoted by H, H̃,E, Ẽ which de-
pend upon three variables : x, ξ and t. The light-cone
momentum 3 fraction x is defined by k+ = xP+, where k
is the quark loop momentum and P is the average nucleon
momentum (P = (p+p′)/2, where p(p′) are the initial (fi-
nal) nucleon four-momenta, respectively). The skewedness
variable ξ is defined by ∆+ = −2ξ P+, where ∆ = p′−p is
the overall momentum transfer in the process, and where
2ξ → xB/(1−xB/2) in the Bjorken limit. Furthermore, the
third variable entering the SPD’s is given by the Mandel-
stam invariant t = ∆2, being the total squared momentum
transfer to the nucleon. In a frame where the virtual pho-
ton momentum qµ and the average nucleon momentum
Pµ are collinear along the z-axis and in opposite direc-
tion, one can parametrize the non-perturbative object in
the lower blobs of fig. 9 as

P+

2π

∫
dy−eixP

+y−〈p′ |ψ̄β(−y/2)ψα(y/2)|p〉
∣∣∣∣∣
y+=y⊥=0

3 Using the definition a± ≡ 1/
√
2(a0 ± a3) for the light-cone

components
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=
1
4

{
(γ−)αβ

[
Hq(x, ξ, t) N̄(p

′
)γ+N(p)

+Eq(x, ξ, t) N̄(p
′
)iσ+κ

∆κ

2mN
N(p)

]
+(γ5γ−)αβ

[
H̃q(x, ξ, t) N̄(p

′
)γ+γ5N(p)

+ Ẽq(x, ξ, t) N̄(p
′
)γ5

∆+

2mN
N(p)

]}
, (42)

where ψ is the quark field, N the nucleon spinor and
mN the nucleon mass. The lhs of eq. (42) can be in-
terpreted as a Fourier integral along the light-cone dis-
tance y− of a quark-quark correlation function, represent-
ing the process where a quark is taken out of the ini-
tial nucleon (with momentum p) at the space-time point
y/2, and is put back in the final nucleon (with momen-
tum p′) at the space-time point −y/2. This process takes
place at equal light-cone time (y+ = 0) and at zero trans-
verse separation (y⊥ = 0) between the quarks. The re-
sulting one-dimensional Fourier integral along the light-
cone distance y− is with respect to the quark light-cone
momentum xP+. The rhs of eq. (42) parametrizes this
non-perturbative object in terms of four SPD’s, according
to whether they correspond to a vector operator (γ−)αβ
or an axial-vector operator (γ5γ−)αβ at the quark level.
The vector operator corresponds at the nucleon side to a
vector transition (parametrized by the function Hq, for a
quark of flavor q) and a tensor transition (parametrized by
the function Eq). The axial-vector operator corresponds
at the nucleon side to an axial-vector transition (function
H̃q) and a pseudoscalar transition (function Ẽq).

In fig. 9, the variable x runs from −1 to 1. There-
fore, the momentum fractions (x + ξ or x − ξ) of the ac-
tive quarks can either be positive or negative. Since posi-
tive (negative) momentum fractions correspond to quarks
(antiquarks), it has been noted in [63] that in this way,
one can identify two regions for the SPD’s : when x > ξ
both partons represent quarks, whereas for x < −ξ both
partons represent antiquarks. In these regions, the SPD’s
are the generalizations of the usual parton distributions
from DIS. Actually, in the forward direction, the SPD’s H
and H̃ reduce to the quark density distribution q(x) and
quark helicity distribution ∆q(x) respectively, obtained
from DIS :

Hq(x, 0, 0) = q(x) , H̃q(x, 0, 0) = ∆q(x) . (43)

The functions E and Ẽ are not measurable through DIS
because the associated tensors in eq. (42) vanish in the
forward limit (∆ → 0). Therefore, E and Ẽ are new lead-
ing twist functions, which are accessible through the hard
exclusive electroproduction reactions, discussed in the fol-
lowing.

In the region −ξ < x < ξ, one parton connected to
the lower blob in fig. 9 represents a quark and the other
one an antiquark. In this region, the SPD’s behave like a
meson distribution amplitude and contain completely new
information about nucleon structure, because the region
−ξ < x < ξ is absent in DIS, which corresponds to the
limit ξ → 0.

Besides coinciding with the quark distributions at van-
ishing momentum transfer, the skewed parton distribu-
tions have interesting links with other nucleon structure
quantities. The first moments of the SPD’s are related to
the elastic form factors (FF) of the nucleon through model
independent sum rules. By integrating eq. (42) over x, one
obtains the following relations for one quark flavor :∫ +1

−1

dxHq(x, ξ, t) = F q
1 (t) ,∫ +1

−1

dxEq(x, ξ, t) = F q
2 (t) ,∫ +1

−1

dx H̃q(x, ξ, t) = gqA(t) ,∫ +1

−1

dx Ẽq(x, ξ, t) = hqA(t) . (44)

The elastic FF for one quark flavor on the rhs of eqs. (44)
are related to the physical ones (restricting oneself to u, d
and s quark flavors) as

F u
1 = 2F p

1 + F n
1 + F s

1 , F d
1 = 2F n

1 + F p
1 + F s

1 , (45)

where F p
1 and F

n
1 are the usual proton and neutron Dirac

FF respectively, and where F s
1 is the strangeness form fac-

tor. Relations similar to eq. (45) hold for the Pauli FF F q
2 .

For the axial vector FF one uses the isospin decomposi-
tion :

guA =
1
2
gA +

1
2
g0A , gdA = −1

2
gA +

1
2
g0A , (46)

where gA(g0A) are the isovector (isoscalar) axial FF re-
spectively. Similar relations exist for hA. The isovector
axial form factor gA is known from experiment, with
gA(0) ≈ 1.267. The induced pseudoscalar form factor hA
contains an important pion pole contribution, through the
partial conservation of the axial current (PCAC).

A lot of the recent interest and activity in this field has
been triggered by the observation of [62] that the SPD’s
may shed a new light on the “spin-puzzle”. Starting from a
(color) gauge-invariant decomposition of the nucleon spin :
1/2 = Jq + Jg , where Jq and Jg are the total quark and
gluon angular momentum, respectively, it was shown in
[62] that the second moment of the unpolarized SPD’s at
t = 0 gives

Jq =
1
2

∫ +1

−1

dxx [Hq(x, ξ, t = 0) + Eq(x, ξ, t = 0)] , (47)

and this relation is independent of ξ. The quark angular
momentum Jq decomposes as : Jq = ∆Σ/2 + Lq , where
∆Σ/2 and Lq are the quark spin and orbital angular mo-
mentum, respectively. As ∆Σ is measured through polar-
ized DIS experiments, a measurement of the sum rule of
eq. (47) in terms of the SPD’s, provides a model indepen-
dent way to determine the quark orbital contribution Lq
to the nucleon spin.
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Fig. 10. ξ-dependence of the SPD Hd at t = 0 with the
ansatz (based on the MRST98 [74] quark distributions) used
in ref. [72]. Upper panel : valence d-quark SPD, lower panel :
total d-quark SPD. The thin lines (ξ = 0) correspond with the
ordinary d-quark distributions.

Ultimately, one wants to extract the SPD’s from data,
but in order to evaluate the electroproduction observables,
and to study their sensitivity to the new physics, one needs
an educated guess for the SPD’s. In ref. [72], a model for
the SPD’s was constructed using a ξ-dependent product
ansatz (for the double distributions of [69,73]) of a quark
distribution and an asymptotic “meson-like” distribution
amplitude (see ref. [72] for more details). For the quark
distributions, the MRST98 parametrization [74] is used
as input. The t-dependence of the model for the SPD’s is
given by the corresponding FF (Dirac form factor for H,
axial form factor for H̃), so that the first moments of the
SPD’s are satisfied by construction. As an example, the
d-quark SPD (formerly also denoted as off-forward parton
distribution (OFPD)), using the above described ansatz,
is shown in fig. 10.

One observes from fig. 10 the transition from a quark
distribution (ξ = 0) to a meson distribution amplitude
(ξ = 1). Model calculation of the SPD’s are currently pos-
sible within the QCD chiral models for intermediate xB.
In particular, a calculation [75] in the chiral quark soliton
model (see ref. [76] for a review) found a strong depen-
dence of the SPD’s on ξ and fast “crossovers” at |x| = ξ.
Such behavior is related to the fact that the SPD’s in the
region −ξ < x < ξ have properties of meson distribution
amplitudes. In particular for the SPD H, this can be seen
as being due to a scalar-isoscalar two-pion exchange con-
tribution [77], indicating that the SPD’s are qualitatively

a richer source of nucleon structure information than ordi-
nary parton distributions. One may expect that eventually
it will be possible to calculate SPD’s for intermediate xB
using lattice QCD.

5.3 Leading-order amplitudes and observables for
DVCS and hard meson electroproduction

The leading-order (L.O.) DVCS amplitude in the forward
direction is given [69,62] by the handbag diagram shown
on the left panel of fig. 9 (the crossed diagram which is not
shown is also understood). A formal factorization proof for
DVCS has been given in [70,71].

To calculate the DVCS amplitude in the Bjorken
regime, it is natural to express the momenta in the process
(qµ of the virtual photon, q′µ of the real photon, and Pµ

denoting the average nucleon momentum) in terms of the
lightlike vectors

p̃µ =
P+

√
2
(1, 0, 0, 1) , nµ =

1
P+

√
2
(1, 0, 0,−1) . (48)

Using the parametrization of eq. (42) for the bilocal quark
operator, the L.O. DVCS tensor Hµν

L.O.DV CS (defined e.g.,
in [1]) follows from the handbag diagrams as :

Hµν
L.O.DVCS

=
1
2
[p̃µnν + p̃νnµ − gµν ]

×
∫ +1

−1

dx
[

1
x− ξ + iε

+
1

x+ ξ − iε

]
×

[
Hp

DVCS(x, ξ, t) N̄(p
′
)γ.nN(p)

+Ep
DVCS(x, ξ, t) N̄(p

′
)iσκλ

nκ∆λ

2mN
N(p)

]
+

1
2

[−iεµνκλp̃κnλ] ∫ +1

−1

dx
[

1
x− ξ + iε

− 1
x+ ξ − iε

]
×

[
H̃p

DVCS(x, ξ, t)N̄(p
′
)γ.nγ5N(p)

+ Ẽp
DVCS(x, ξ, t)N̄(p

′
)γ5

∆ · n
2mN

N(p)
]
. (49)

On the rhs of the DVCS tensor of eq. (49), the SPD’s
H, H̃,E, Ẽ enter in a convolution integral over the quark
momentum fraction x. This is a qualitative difference com-
pared with DIS, where one is only sensitive (through the
optical theorem) to the imaginary part of the forward dou-
ble virtual Compton amplitude. We refer to ref. [1] for de-
tails and for the formalism to calculate DVCS observables
starting from the DVCS tensor of eq. (49).

The leading-order DVCS amplitude corresponding to
eq. (49), is exactly gauge invariant with respect to the
virtual photon, i.e. qν H

µν
L.O.DVCS = 0. However, electro-

magnetic gauge invariance is violated by the real photon
except in the forward direction. This violation of gauge
invariance is a higher twist (twist-3) effect compared to
the leading order term Hµν

L.O.DVCS. Since q
′
µH

µν
L.O.DV CS ∼
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∆⊥, an improved DVCS amplitude linear in ∆⊥ has been
proposed in ref. [1] to restore gauge invariance (in the
nonforward direction) in a heuristic way :

Hµν
DVCS = Hµν

L.O.DVCS +
p̃µ

(p̃ · q′)
(∆⊥)λ Hλν

L.O.DVCS ,

(50)
leading to a correction term to the L.O. DVCS amplitude
of order O (∆⊥/Q).

Very recently, the gauge invariance of the DVCS ampli-
tude was addressed in much more detail in several works
[78–80]. It was found that the twist-3 terms which restore
gauge invariance (to twist-4 accuracy) involve two contri-
butions. First there are terms proportional to the twist-2
SPD’s of eq. (49), which were found to completely coin-
cide with the improved DVCS amplitude of eq. (50). In
addition, there are terms which are characterized by new
‘transverse’ SPD’s (see refs. [78–80] for details). These lat-
ter functions are suppressed by one power 1/Q compared
with the contribution of the twist-2 SPD’s in DVCS cross-
sections, and could in principle be separated by measur-
ing DVCS observables over a sufficiently large Q2 range
(see, e.g., [81] for tests of the handbag approximation to
DVCS). In view of current DVCS experiments which are
performed or planned at Q2 in the few GeV2 range only,
the numerical importance of those additional contribu-
tions remains to be investigated.

Besides the DVCS process, a factorization proof was
also given for the L.O. meson electroproduction ampli-
tudes in the Bjorken regime [82,83], which is illustrated
on the right panel of fig. 9. This factorization theorem
only applies when the virtual photon is longitudinally po-
larized. In the valence region, the L.O. amplitude ML

for meson production by a longitudinal photon consists of
evaluating fig. 9 (right panel, where only one of the four
L.O. diagrams is shown) with the one-gluon exchange di-
agrams as hard scattering kernel. In this way, the L.O.
expressions for ρ0L (longitudinally polarized vector meson)
and π0 electroproduction were calculated in [84] (see also
ref. [85]) as

ML
ρ0
L
= −ie 4

9
1
Q

[ ∫ 1

0

dz
Φρ(z)
z

]
× 1
2

∫ +1

−1

dx
[

1
x− ξ + iε

+
1

x+ ξ − iε

]
× (4παs)

{
Hp
ρ0
L
(x, ξ, t)N̄(p

′
)γ.nN(p)

+Ep
ρ0
L
(x, ξ, t)N̄(p

′
)iσκλ

nκ∆λ

2mN
N(p)

}
, (51)

ML
π0 = −ie 4

9
1
Q

[∫ 1

0

dz
Φπ(z)
z

]
× 1
2

∫ +1

−1

dx
[

1
x− ξ + iε

+
1

x+ ξ − iε

]
× (4παs)

{
H̃p
π0(x, ξ, t)N̄(p

′
)γ.nγ5N(p)

+Ẽp
π0(x, ξ, t)N̄(p

′
)γ5

∆ · n
2mN

N(p)
}
, (52)

1

10

10-2

10-3

1 10

xB = 0.3ρ0
L

ρ+
L

ωL

γ

Q2 (GeV 2)

dσ
 / 

dt
 (

t =
 t

m
in

) 
 (

nb
 / 

G
eV

2 )

xB = 0.3(π+)pole

(π+)n.p.

π0

η

Q2 (GeV 2)

1 10

Fig. 11. Scaling behavior of the L.O. predictions for the for-
ward differential electroproduction cross-section on the pro-
ton, for vector mesons (left panel) and pseudoscalar mesons
(right panel), as calculated in ref. [72]. For the π+ channel, the
pion pole contribution (full curve, (π+)pole) is shown separately
from the H̃ contribution (dashed curve, (π+)n.p.). The scaling
behavior of the forward transverse L.O. DVCS cross-section is
shown by the dashed-dotted curve in the left panel.

where αs is the QCD coupling constant. Because the quark
helicity is conserved in the hard scattering process, one
finds the interesting result that the vector meson elec-
troproduction amplitude depends only on the unpolar-
ized SPD’s H and E, whereas the pseudoscalar meson
electroproduction amplitudes depend only on the polar-
ized SPD’s H̃ and Ẽ. In contrast, the DVCS amplitude
of eq. (49) depends on both the unpolarized and polar-
ized SPD’s. Another difference from DVCS, is the fact
that the meson electroproduction amplitudes require ad-
ditional non-perturbative input from the meson distribu-
tion amplitudes Φρ(z) and Φπ(z) respectively, for which
the asymptotic forms are taken in the calculations. From
eqs. (51,52), one furthermore sees that the L.O. longitu-
dinal amplitudes for meson electroproduction behave as
1/Q. At large Q2, fixed xB and fixed t, this leads to a
1/Q6 behavior for the longitudinal cross section dσL/dt,
which provides an experimental signature (scaling) of
the leading-order mechanism. Expressions analogous to
eqs. (51, 52) have also been worked out for the charged
meson channels ρ±, π± as well as for the ω, φ and η chan-
nels (see refs. [86–88,72] for details).

According to the considered reaction, the SPD’s enter
in different combinations due to the charges and isospin
factors. For DVCS on the proton, the combination is

Hp
DVCS(x, ξ, t) =

4
9
Hu +

1
9
Hd +

1
9
Hs , (53)

and similarly for H̃, E and Ẽ. For electroproduction of
ρ0 and π0 on the proton, the isospin structure yields the
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Fig. 12. Valence d-quark contribution to the SPD Hd at t = 0
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with the ansatz as in fig. 10. The thin (lower) solid curve (ξ =
0) corresponds to the ordinary d-quark distributions, whereas
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V (x =
ξ, ξ, t = 0) as measured through the SSA.

combination

Hp
ρ0(x, ξ, t) =

1√
2

{
2
3
Hu +

1
3
Hd

}
, (54)

H̃p
π0(x, ξ, t) =

1√
2

{
2
3
H̃u +

1
3
H̃d

}
, (55)

and similar for E and Ẽ. Corresponding relations for the
ρ±, ω, φ, π± and η channels can be found in refs. [86–88,
72]. Therefore, the measurements of the different meson
production channels are sensitive to different combina-
tions of the same universal SPD’s, and allow us to perform
a flavor separation of the SPD’s, provided one is able to
deconvolute the SPD’s from the leading-order amplitudes.

Some representative results for DVCS and meson elec-
troproduction observables using the ξ-dependent ansatz
for the SPD’s, are shown in the following. More detailed
results can be found in refs. [84,1,72].

Before considering the extraction of the SPD’s from
electroproduction data, it is compulsory to demonstrate
that the scaling regime has been reached. In fig. 11,
the forward longitudinal electroproduction cross-sections
are shown as a function of Q2 and the L.O. predictions
are compared for different mesons. The L.O. amplitude
for longitudinal electroproduction of mesons was seen to
behave as 1/Q, leading to a 1/Q6 scaling behavior for
dσL/dt.

By comparing the different vector meson channels in
fig. 11, one sees that the ρ0L channel yields the largest
cross-section. The ωL channel in the valence region (xB ≈

e- + p →  e - + p + γ
Ee = 6 GeV, Q 2 = 2.5 GeV 2, xB = 0.35, t = -0.3 GeV 2
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Fig. 13. A comparison of the single spin asymmetries for
DVCS in JLab kinematics, for a ξ-independent ansatz for the
SPD’s as in ref. [1] (dashed-dotted curve), and a ξ-dependent
ansatz for the SPD’s as in fig. 10 (full curve).

0.3) is about a factor of 5 smaller than the ρ0L channel,
which is to be compared with the ratio at small xB (in the
diffractive regime) where ρ0 : ω = 9 : 1. The ρ+L channel,
which is sensitive to the isovector combination of the un-
polarized SPD’s, yields a cross-section comparable to the
ωL channel. The ρ+L channel is interesting as there is no
competing diffractive contribution, and therefore allows
to test directly the quark SPD’s. The three vector meson
channels (ρ0L, ρ

+
L , ωL) are highly complementary in order

to perform a flavor separation of the unpolarized SPD’s
Hu and Hd. A dedicated experiment is planned at JLab
at 6 GeV in the near future [89] to investigate the on-
set of the scaling behavior for ρ0L electroproduction in the
valence region (Q2 ≈ 3.5 GeV2, xB ≈ 0.3).

For the pseudoscalar mesons which involve the polar-
ized SPD’s, one remarks in fig. 11 the prominent contri-
bution of the charged pion pole to the π+ cross-section.
For the contribution proportional to the SPD H̃, it is also
seen that the π0 channel is about a factor of 5 below the
π+ channel due to isospin factors. In the π0 channel, the
u- and d-quark polarized SPD’s enter with the same sign,
whereas in the π+ channel, they enter with opposite signs.
As the polarized SPD’s are constructed here from the cor-
responding polarized parton distributions, the difference
between the predictions for the π0 and π+ channels re-
sults from the fact that the polarized d-quark distribution
is opposite in sign to the polarized u-quark distribution.
For the η channel, the ansatz for the SPD H̃ based on the
polarized quark distributions yields a prediction compa-
rable to the π0 cross-section.

For the γ leptoproduction in the few GeV beam energy
range, the cross-section is dominated by the Bethe-Heitler
(BH) process (see ref. [1]). However, it was suggested in
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ref. [1] that an exploration of DVCS might be possible if
the beam is polarized. The electron single spin asymmetry
(SSA) does not vanish out of plane due to the interference
between the purely real BH process and the imaginary
part of the DVCS amplitude. Because the SSA measures
the imaginary part of the DVCS amplitude, it is directly
proportional to a linear combination of the SPD’s along
the line x = ξ. In fact, the SSA maps out an ‘envelope’
function, e.g., H(x = ξ, ξ, t), as shown, e.g., in fig. 12 for
the valence down quark SPD in the ansatz of fig. 10.

In fig. 13, it is shown that the SSA yields a sizeable
asymmetry for JLab kinematics, and displays a sensitivity
to the ξ-dependent shape of the SPD’s. An experiment to
measure the SSA for DVCS is planned at JLab at 6 GeV
[90]. The SSA for DVCS is at present also measured at
HERMES [91].

Going up in energy, the increasing virtual photon flux
factor boosts the DVCS part of the γ leptoproduction
cross-section, making it more important compared to the
BH contribution. This provides a nice opportunity for
COMPASS at 200 GeV beam energy, where experiments
have been proposed for DVCS [92] and meson electropro-
duction [93].

5.4 Extension to hard exclusive electroproduction of
decuplet baryons

In the previous section, the main focus were the reactions
γ∗ +N→ γ +N′ and γ∗L +N→ M+N′ with M a meson,
and where N′ is an octet baryon. One of the intriguing
questions of medium-energy QCD dynamics is the differ-
ences and similarities in the structure of baryons belonging
to the different SU(3)f multiplets. In particular, a naive
constituent quark model predicts that they are similar,
while there are suggestions that due to a strong attrac-
tion between the quarks in the spin-isospin zero channel,
diquark correlations should be important in the baryon
octet but not in the decuplet [94]. At the same time the
chiral models suggest that in the limit of a large number
of colors (large Nc) of QCD, which is known to be a useful
guideline, nucleons and ∆ isobars are different rotational
excitations of the same soliton [95,96].

For these studies, the potential of the process γ∗L+N→
π + ∆ as well as the DVCS process γ∗ + N → γ + ∆,
was explored in ref. [97]. In addition, the study of the
processes with production of decuplet baryons has also a
practical usefulness, because in the experiments with low
resolution in the mass of the recoiling system (∆M ≈ 300
MeV for HERMES in the current set-up), the estimates of
∆ production are necessary to extract the N → N SPD’s
from such data.

In ref. [97], a new set of SPD’s were introduced for
the axial N → ∆ (isovector) transition, denoted as C(3)

i ,
which enter into π∆ electroproduction :

P+

2π

∫
dy−eixP

+y−〈∆+|ψ̄(−y/2)n/γ5ψ(y/2)|N〉
∣∣∣∣∣
y+=y⊥=0

= ψ̄β(p′)
[
C
(3)
1 (x, ξ, t)nβ

+ C
(3)
2 (x, ξ, t)

∆β(n ·∆)
m2

N

+ . . .

]
N(p), (56)

where the same notations are used as before, and where
ψβ(p′) is the Rarita-Schwinger spinor for the ∆ isobar. In
eq. (56), the ellipses denote other contributions which are
suppressed at large Nc. For the N → ∆ DVCS process,
besides the axial SPD’s, also vector SPD’s enter which
were also defined in ref. [97].

The observation that in the large-Nc limit, the nucleon
and ∆ are rotational excitations of the same classical soli-
ton object, allows us to derive a number of relations be-
tween N→ N and N→ ∆ SPD’s. For C(3)

1 and C(3)
2 , these

have the form [86] :

C
(3)
1 (x, ξ, t) =

√
3 H̃(3)(x, ξ, t), (57)

C
(3)
2 (x, ξ, t) =

√
3/4 Ẽ(3)(x, ξ, t) , (58)

in terms of the (isovector) N→ N SPD H̃(3) = H̃u − H̃d,
and analogously for Ẽ(3).

Using the large-Nc relations of eq. (57), one can easily
derive the relations between the different cross-sections
for charged pion production as σγ

∗p→π+n
L : σγ

∗p→π+∆0

L :
σγ

∗p→π−∆++

L : σγ
∗n→π−p

L ≈ 1 : 0.5 : 1.25 : 0.8.
Besides the cross-section σL, the second observable in-

volving only longitudinal amplitudes and being a leading-
order observable for hard exclusive meson electroproduc-
tion, is the single spin asymmetry, for a proton target po-
larized perpendicular to the reaction plane (or the equiva-
lent recoil polarization observable) [86]. These transverse
spin asymmetries for π+n and π+∆0 are shown in fig. 14.

It is obvious from fig. 14, that large transverse spin
asymmetries are predicted for these processes, related to

γ*
L p → π+ n, π+ ∆0
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Fig. 14. Transverse spin asymmetries for the longitudinal elec-
troproduction of π+n and π+∆0, at different values of t (in
(GeV/c)2). Figure from ref. [97].
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Figure from ref. [72], where the references of the data can also
be found.

the peculiar feature of chiral QCD. As a consequence, in-
vestigations of these processes can provide unique tests of
the soliton type approach to baryon structure. The spin
asymmetries are likely to be less sensitive to higher twist
effects and hence can be explored already using the HER-
MES detector and JLab at higher energies. Furthermore,
the study of these processes would allow one to make a
more reliable separation of the π pole contribution in the
electroproduction of pions, which is mandatory for the
measurement of the pion elastic form factor at higher Q2.

5.5 Power corrections to the leading-order amplitudes

When measuring hard electroproduction reactions in the
region Q2 ≈ 1 − 20 GeV2, there arises the question of
the importance of power corrections to the leading-order
amplitudes, i.e. how fast does one approach the scaling
regime predicted by the L.O. amplitudes. One source of
power corrections is evident from the structure of the ma-
trix element of eq. (42) which defines the SPD’s, where
the quarks are taken at zero transverse separation. This
amounts to neglect, at leading order, the quark’s trans-
verse momentum compared with its large longitudinal (+
component) momentum. A first estimate of these correc-
tions due to the quark’s intrinsic transverse momentum
has been obtained in ref. [72], which is referred to for
details. This correction is known to be important for a
successful description at the lower Q2 values of the π0γ∗γ
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L
 + p
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Fig. 16. Longitudinal forward differential cross-section for ρ0
L

electroproduction. Calculations compare the quark exchange
mechanism (dotted lines) with the two-gluon exchange mech-
anism (dashed lines) and the sum of both (full lines). Both
calculations include the corrections due to intrinsic transverse
momentum dependence. The data are from NMC (triangles),
E665 (solid circles), ZEUS 93 (open circles) and ZEUS 95 (open
squares). Figure from ref. [72], where the references of the data
can also be found.

transition FF, for which data exist in the rangeQ2 ≈ 1−10
GeV2. For the pion elastic FF in the transition region be-
fore asymptotia is reached, the power corrections due to
both the transverse momentum dependence and the soft
overlap mechanism (i.e. the process which does not pro-
ceed through one-gluon exchange) are quantitatively im-
portant. The result for the pion elastic FF is shown in
fig. 15, where it is seen that the leading-order PQCD re-
sult is approached only at very large Q2. The correction
including the transverse momentum dependence gives a
substantial suppression at lower Q2 (about a factor of two
around Q2 ≈ 5 GeV2). At these lower Q2 values, the in-
clusion of the transverse momentum dependence renders
the PQCD calculation internally consistent.

These form factors were taken as a guide in ref. [72]
to estimate the corrections due to the parton’s intrinsic
transverse momentum dependence in the DVCS and hard
meson electroproduction amplitudes.

Although experimental data for ρ0L electroproduction
at larger Q2 do not yet exist in the valence region (xB ≈
0.3), the reaction γ∗L p −→ ρ0L p has been measured at
smaller values of xB. Therefore, in fig. 16 the calculations
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are compared to those data, in order to study how the
valence region is approached, in which one is sensitive to
the quark SPD’s. For the purpose of this discussion, we
call the mechanism proceeding through the quark SPD’s
(i.e. the right panel of fig. 9), the Quark Exchange Mech-
anism (QEM). Besides the QEM, ρ0 electroproduction at
large Q2 and small xB proceeds predominantly through
a perturbative two-gluon exchange mechanism (PTGEM)
as studied in ref. [98]. To compare to the data at interme-
diate Q2, the power corrections due to the parton’s intrin-
sic transverse momentum dependence were implemented
in both mechanisms (see ref. [72] for details), which gives
a significant reduction at the lower Q2. The results are
compared with the data in fig. 16, showing that the PT-
GEM explains well the fast increase of the cross-section
at high c.m. energy (W ), but substantially underestimates
the data at the lower energies. This is where the QEM is
expected to contribute since xB is then in the valence re-
gion. The results including the QEM describe the change
of behavior of the data at lower W quite nicely.

Recently, ρ0L data have been obtained by the HER-
MES Collaboration for Q2 up to 5 GeV2 and aroundW ≈
5 GeV [99]. These data show a clear dominance of the
QEM in the intermediate W range as predicted in [84,
72]. The model ansatz for the SPD’s of ref. [72] gives a
fairly good agreement with these longitudinal ρ0 electro-
production data [99].

5.6 Perspectives and outlook

In order to extract SPD’s from forthcoming data, the Q2

evolution of the SPD’s has been worked out at the next-
to-leading-order (NLO) level in ref. [100], which shows
that the Q2 evolution of the SPD’s interpolates between
the evolution of parton distributions and the evolution of
distribution amplitudes. The NLO αs corrections to the
DVCS hard scattering amplitude have been calculated in
refs. [101,70]. A NLO calculation of the DVCS amplitude
in the region xB > 10−2, including the two-loop evolu-
tion effects of the SPD’s has been performed recently in
ref. [102], to which we refer for details.

A major open theoretical question in this field is how
the SPD’s can be deconvoluted from the leading-order am-
plitudes. Suitable parametrizations of the SPD’s, incorpo-
rating all physical constraints, might be one avenue to
tackle this problem. In the absence of a solution to this
problem, one has to resort to model calculations or edu-
cated guesses for the SPD’s in order to compare with the
data.

On the experimental side, it is clear that new and ac-
curate data are needed for various exclusive channels at
large Q2 in the valence region, where the quark exchange
mechanism dominates. Several experiments are being per-
formed or are planned or proposed at JLab [89,103,90],
HERMES and COMPASS [93,92]. Looking somewhat fur-
ther into the future, the measurement of hard exclusive
reactions will be one of the central themes for the planned
upgrade of JLab to 12 GeV [104]. A facility with high lu-
minosity combined with an intermediate energy of around

25 GeV, such as, e.g., the ELFE project [105], will be
a dedicated facility to measure these exclusive reactions
at high momentum transfer and to map out these new
SPD’s in detail. Although such exclusive experiments at
large Q2 are quite demanding, the fundamental interest
of the SPD’s justifies an effort towards their experimental
determination.

6 QED radiative corrections to virtual
Compton scattering

6.1 Introduction

We have discussed in section 3 how VCS below pion pro-
duction threshold, allows us to access generalized polariz-
abilities of the proton. Furthermore, we have seen in sec-
tion 5 that VCS in the Bjorken regime determines general-
ized parton distributions of the nucleon. In both regimes,
experiments are either being done or planned for the near
future. In order to extract the nucleon structure informa-
tion of interest from the ep → epγ reaction, especially in
those kinematical situations where the Bethe-Heitler pro-
cess is not negligible, it is indispensable to have a very
good understanding of the QED radiative corrections to
the ep→ epγ reaction.

The ep → epγ reaction is particular in comparison
with other electron scattering reactions, because the pho-
ton can be emitted from both the proton side (this is the
VCS process which contains the nucleon structure infor-
mation of interest) or from one of the electrons (which is
the Bethe-Heitler process). The radiative corrections ob-
tained from the Bethe-Heitler process differ formally from
the case of elastic electron scattering.

6.2 Results for the QED radiative corrections to VCS

The first order QED radiative corrections to the ep→ epγ
reaction were calculated in ref. [106]. The one-loop vir-
tual radiative corrections have been evaluated by a com-
bined analytical-numerical method. Several tests were per-
formed to cross-check the numerical method used. It was
shown in ref. [106] how all IR divergences cancel when
adding the soft-photon emission processes. Furthermore,
a fully numerical method was presented for the photon
emission processes where the photon energy is not very
small compared with the electron energies, which makes
up the radiative tail.

Figure 17 shows as representative result the effect of
the radiative corrections on the VCS differential cross sec-
tion for the MAMI VCS experiment [31] at an outgoing
photon energy of q′ = 111.5 MeV (we refer to [106] for all
details and more results). It is seen that the total effect
of the radiative corrections in these kinematics is a reduc-
tion of the BH+Born cross-section of the order of 20%.
The effect of the radiative corrections was also confirmed
by the experimental results at very low energy of the out-
going photon (q′ = 33 MeV), where the effect of the GP’s
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Fig. 17. Differential ep → epγ cross-section for MAMI kine-

matics at q
′
= 111.5 MeV/c. Dashed-dotted curve : BH +

Born contribution, dashed curve : BH + Born + virtual ra-
diative correction, full curve : BH + Born + total radiative
correction. Figure from ref. [106].

is negligible. From the difference between the radiatively
corrected data and the BH + Born result, the two values
of eq. (25) for the combinations of the proton’s GP’s at
Q2 � 0.33 GeV2 have been extracted in ref. [31].

In ref. [106], calculations of the VCS radiative cor-
rections were also given for unpolarized and polarized
VCS observables both at low energies and in the Bjorken
regime. The results will be an important tool for the analy-
sis of present and forthcoming VCS experiments, in order
to extract the nucleon structure information from these
experiments.

7 Conclusions and outlook

It has been discussed how the real and virtual Compton
scattering in different kinematical regimes provide new
tools to extract nucleon structure information.

It has been seen that for RCS at low energy, new accu-
rate data have become available which not only allow the
extraction of scalar polarizabilities of the proton, but also
start to explore the spin polarizabilities of the nucleon.
Those spin polarizabilities have been calculated recently
to O(p4) in HBChPT. A fixed-t dispersion relation formal-
ism was developed to extract the nucleon polarizabilities
with a minimum of model dependence from both unpolar-
ized and polarized RCS data. The DR formalism was also

used to obtain information on new higher-order polariz-
abilities of the proton, providing new nucleon structure
observables and a new testing ground for the chiral calcu-
lations.

The VCS reaction at low photon energy maps out the
spatial distribution of the polarization densities of the pro-
ton, through generalized polarizabilities. Over the last few
years, the VCS has become a mature field and a first ex-
periment at MAMI at low energy has been successfully
completed. In order to extract GP’s from VCS data over
a larger range of energies, a dispersion relation formalism
is underway, providing a new tool to analyze such data.
The DR formalism provides already results for 4 of the 6
GP’s, which can be confronted with chiral predictions.

The RCS reaction at high-energy and large-momentum
transfer is a tool to access information on the partonic
structure of the nucleon. The PQCD predictions for wide
angle real Compton scattering (90◦ in the c.m.) show a
strikingly different behavior than competing soft-overlap
type mechanisms, and forthcoming experiments can teach
us about the interplay of both mechanism at accessible
energies.

The VCS reaction in the Bjorken regime and associ-
ated hard electroproduction reactions give access to new,
generalized (skewed) parton distributions. The study of
SPD’s has opened up a whole new field in the study of
nucleon structure. These observables unify two different
fields as they interpolate between purely inclusive quanti-
ties (parton distributions) on the one hand and between
simple exclusive quantities (such as form factors) on the
other hand. Besides the SPD’s H and H̃, which reduce
in the DIS limit to the quark distribution and quark he-
licity distribution respectively, there are two entirely new
leading twist SPD’s (E and Ẽ), which cannot be accessed
in DIS. The non-perturbative information contained in
the SPD’s is rather rich as they are functions of 3 dif-
ferent variables. In particular, the skewedness variable ξ
leads to different regions where one is sensitive either to
quark distribution type information or to meson distribu-
tion amplitude information in the nucleon. Through a sum
rule, two of these SPD’s (H and E) determine the quark
orbital angular momentum contribution to the nucleon
spin. An educated guess was shown for these SPD’s, which
was used to estimate the leading-order DVCS amplitude.
Furthermore, the leading-order meson electroproduction
amplitudes were discussed and compared to the available
data. In particular it was seen that in the intermediate
W range (valence region), a dominance of the handbag
mechanism is predicted for ρ0 electroproduction, which
seems to be well confirmed by recent HERMES data. Fur-
thermore, the extension of the formalism of the SPD’s to
the N → ∆ transition was discussed. The large-Nc limit
allows to relate the N → ∆ SPD’s to the N → N SPD’s.
The transverse spin asymmetry was discussed as a promis-
ing observable, likely to be less sensitive to higher twist
effects.

It is easy to foresee that the fields of real and virtual
Compton scattering will show important activities in the
near future both on the theoretical and experimental sides,
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and that an attempt to review them is very timely. It is
hoped however, that the works initiated and discussed in
this paper will stimulate further efforts on the theoretical
and experimental sides to extend our knowledge of nucleon
structure in new directions.
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Drechsel, Phys. Rev. D 62, 014013 (2000).
38. d’Hose N. et al., Letter of Intent for MAMI experi-

ment (1999).
39. Pasquini B., D. Drechsel, M. Gorchtein, A. Metz, and

M. Vanderhaeghen, Phys. Rev. C 62 (2000) in press;
hep-ph/0007144.

40. Vanderhaeghen M., D. Drechsel, M. Gorchtein, A.
Metz, and B. Pasquini, to appear in the Proceedings
of the Symposium on The Gerasimov-Drell-Hearn
Sum Rule and the Spin Structure in the Resonance
Region, 14-17 June 2000, Mainz, Germany.

41. Tarrach R., Nuovo Cimento A 28, 409 (1975).
42. Drechsel D., O. Hanstein, S. Kamalov, L. Tiator,

Nucl. Phys. A 645, 145 (1999).
43. Drechsel D., M. Gorchtein, A. Metz, B. Pasquini, and

M. Vanderhaeghen, in preparation.
44. Sterman G. and P. Stoler, Ann. Rev. Nucl. Part. Sci.

47, 193 (1997).
45. Brodsky S.J. and G.P. Lepage, Phys. Rev. D 22, 2157

(1980).
46. Chernyak V.L. and A.R. Zhitnitsky, Phys. Rep. 112,

173 (1984).
47. Chernyak V.L., A.A. Ogloblin and I.R. Zhitnitskii,

Z.Phys. C42, 569 (1989).
48. King I.D. and C.T. Sachrajda, Nucl. Phys. B 279,

785 (1987).
49. Brodsky S.J. and G.R. Farrar, Phys. Rev. Lett. 31,

1153 (1973).



M. Vanderhaeghen: Real and virtual Compton scattering off the nucleon 479

50. Brodsky S.J. and G.P. Lepage, Phys. Rev. D 24, 2848
(1981).

51. Sivers D., Phys. Rev. D 41, 83 (1990).
52. Radyushkin A.V., Phys. Rev. D 58, 114008 (1998).
53. Diehl M., T. Feldmann, R. Jakob, and P. Kroll, Eur.

Phys. J. C 8, 409 (1999).
54. Farrar G.R. and H. Zhang, Phys. Rev. D 41, 3348

(1990); Phys. Rev. D 42, 2413(E) (1990).
55. Farrar G.R., K. Huleihel and H. Zhang, Nucl. Phys.

B 349, 655 (1991).
56. Kronfeld A.S. and B. Nizic, Phys. Rev. D 44, 3445

(1991); Phys. Rev. D 46, 2272(E) (1992).
57. Vanderhaeghen M., P.A.M. Guichon, and J. Van de

Wiele, Nucl. Phys. A 622, 144c (1997).
58. Brooks T. and L. Dixon, hep-ph/0004143.
59. Wojtsekhowski B., A.M. Nathan, and C. Hyde-

Wright, spokespersons JLab experiment E-99-114.
60. d’Hose N. and G. Tamas, in Proceedings of the Work-

shop VCS’96, edited by V. Breton, Clermont-Ferrand
(1996).

61. D’Angelo A. et al., Nucl. Phys. A 622, 226c (1997).
62. Ji X., Phys. Rev. Lett. 78, 610 (1997); Phys. Rev. D

55, 7114 (1997).
63. Radyushkin A.V., Phys. Lett. B 380, 417 (1996).
64. Ji X., J. Phys. G 24, 1181 (1998).
65. Watanabe K., Prog. Theor. Phys. 67, 1834 (1982).
66. Bartels J. and Loewe M., Z. Phys. C 12, 263 (1982).
67. Dittes F.M., Müller D., Robaschik D., Geyer B., and

Horejsi J., Phys. Lett. B 209, 325 (1988).
68. Jain P. and Ralston J.P., Proceedings of the Work-

shop on Future Directions in Particle and Nuclear
Physics at Multi-GeV Hadron Beam Facilities, BNL,
New York (1993).

69. Müller D., Robaschik, Geyer B., Dittes F.-M., and
Horejsi J., Fortschr. Phys. 42, 101 (1994).

70. Ji X. and J. Osborne, Phys. Rev. D 58, 094018
(1998).

71. Collins J.C. and A. Freund, Phys. Rev. D 59, 074009
(1999).

72. Vanderhaeghen M., P.A.M. Guichon, and M. Guidal,
Phys. Rev. D 60, 094017 (1999).

73. Radyushkin A.V., Phys. Rev. D 59, 014030 (1998).
74. Martin A.D., R.G. Roberts, W.J. Stirling, R.S.

Thorne, Eur. Phys. J. C 4, 463 (1998).
75. Petrov V., P. Pobylitsa, M. Polyakov, I. Börnig, K.

Goeke, and C. Weiss, Phys. Rev. D 57, 4325 (1998).
76. Christov, Chr.V., A. Blotz, H.-C. Kim, P. Pobylitsa,

T. Watabe, Th. Meissner, E. Ruiz Arriola, and K.
Goeke, Prog. Part. Nucl. Phys. 37, 91 (1996).

77. Polyakov M.V. and C. Weiss, Phys. Rev. D 60,
114017 (1999).

78. Anikin I.A., B. Pire, and O.V. Teryaev, Phys. Rev.
D 62, 071501(R) (2000).

79. Penttinen M., M.V. Polyakov, A.G. Shuvaev, and M.
Strikman, hep-ph/0006321.

80. Belitsky A.V., and D. Müller, hep-ph/0007031.
81. Diehl M., T. Gousset, B. Pire, J.P. Ralston, Phys.

Lett. B 411, 193 (1997).

82. Collins J.C., L. Frankfurt and M. Strikman, Phys.
Rev. D 56, 2982 (1997).

83. Radyushkin A.V., Phys. Lett. B 385, 333 (1996).
84. Vanderhaeghen M., P.A.M. Guichon, and M. Guidal,

Phys. Rev. Lett. 80, 5064 (1998).
85. Mankiewicz L., G. Piller, T. Weigl, Eur. Phys. J. C

5, 119 (1998).
86. Frankfurt L.L., P.V. Pobylitsa, M.V. Polyakov and

M. Strikman, Phys. Rev. D 60, 014010 (1999).
87. Mankiewicz L., G. Piller, T. Weigl, Phys. Rev. D 59,

017501 (1999).
88. Mankiewicz L., G. Piller and A. Radyushkin, Eur.

Phys. J. C 10, 307 (1999).
89. Guidal M., C. Marchand, and E. Smith, spokesper-

sons JLab experiment E-98-107/E-99-105.
90. Bertin P.Y., Y. Roblin and F. Sabatié, spokespersons
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